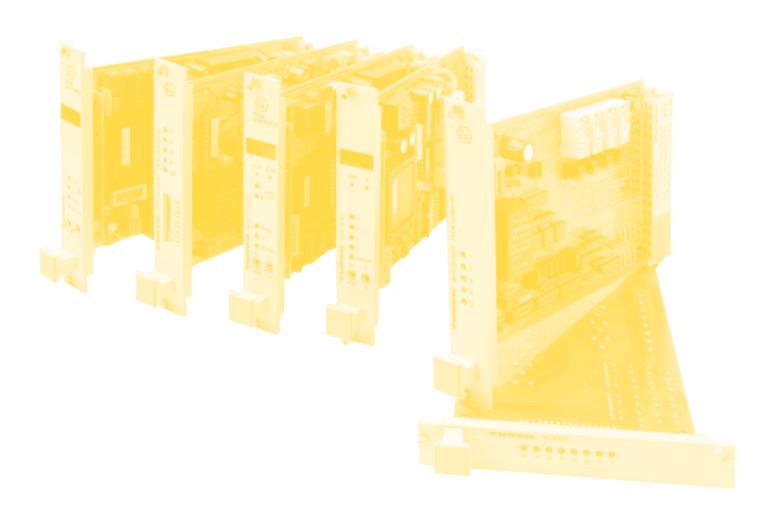





Industrial Automation


INTERFACE TECHNOLOGY ON 19" CARD







### Interface technology on 19" card





| INTRODUCTION<br>EXPLOSION PROTECTION                      | A |
|-----------------------------------------------------------|---|
| ISOLATING<br>SWITCHING AMPLIFIERS                         | 1 |
| ROTATIONAL SPEED METERS/<br>MONITORS                      | 2 |
| ANALOGUE DATA TRANSMITTERS/MEASURING AMPLIFIERS           | 3 |
| DIGITAL<br>TIME CARDS                                     | 4 |
| SOLENOID DRIVERS/<br>INTRINSICALLY SAFE<br>POWER SUPPLIES | 5 |
| COUPLERS                                                  | 6 |
| POWER SUPPLIES/<br>FUSE CARDS                             | 7 |
| ACCESSORIES  TYPE INDEX                                   | 8 |
| INFORMATION - SERVICE & SUPPORT                           |   |

#### **Explosion Protection**

| Su | mmary of Topics                    | Page |
|----|------------------------------------|------|
| 1  | Directives and standards           | 0-4  |
| 2  | Definitions of terms               | 0-5  |
| 3  | Electrical equipment featuring     |      |
|    | protection type "Intrinsic Safety" | 0-6  |
| 4  | Zone Classification                | 8-0  |
| 5  | Marking of devices                 | 0-11 |
| 6  | Manufacturer obligations           | 0-11 |
| 7  | Guidelines for use of devices      |      |
|    | with intrinsically safe circuits   | 0-12 |
| 8  | Proof of intrinsic safety          | 0-15 |
| 9  | Approvals outside the EU           | 0-16 |
| 10 | Approvals and certificates of      |      |
|    | conformity via Internet            | 0-16 |
|    |                                    |      |

The process of harmonisation of regulations in the field of explosion protection within the member states of the European Union was initiated in 1996. One of the main reasons for harmonisation is that the different regulations existing in the individual member states present a trade barrier. A transitionary period applied until the 30.06.2003 in which both the old and new regulations could be applied. Since the 01.07.2003, the same common regulations apply for explosion protection in all EU states.

In the following please find a brief comparison between the new and the "old" regulations. Our more detailed brochure "Explosion Protection - A Practical Guide" can be provided on request. Nevertheless, the user is obliged to know the presently applicable regulations and directives.

#### 1 Directives and standards

#### History

Until the end of 1975, numerous national directives covering the field of explosion protection existed in the individual European states. On 18 December 1975, the first framework directive on explosion protection (mining excluded) came into effect, applying in the member states of the European Union: 76/117/EWG.

Until 1990 there were frequent amendments of this directive. This directive referred to the characteristics and structure of the equipment at issue and was directly related to standards. It applied exclusively to electrical equipment and explosion protection (except mining).

The fact that national directives were still in effect restricted free trade in this area. In the beginning of 1994, the "Framework Directive 94/9/EC of the European Parliament and Council of 23 March 1994 on the approximation of the laws of the Member States concerning equipment and protective systems intended for use in potentially explosive atmospheres" was passed. This directive has regard to the "European Treaty" of 1985, in particular article 100a (amendment of 2 February 1992), establishing the European Community.

To find a general abbreviation for this new directive it was agreed to use the name **ATEX 100a**. ATEX is an abbreviation of the French translation of "explosive atmosphere" (atmosphère explosible) and 100a refers to the article 100a. Apart from the article 100a, there are further articles which have not yet been fully transposed into according directives. TURCK catalogues always use the term **ATEX** to relate to the new directives on explosion protection conforming to ATEX 100a.

Within the member states of the European Union the ATEX 100a was translated into national legislation, e.g. in the Federal Republic of Germany by the "Gerätesicherheitsgesetz (§11 GSGV)" and the "Explosionsschutzverordnung (EXVO)".

The directives applying for explosion protection were valid until 30.06.2003. The ATEX 100a came into force on the 01.07.2003, which has been up-dated and re-named to ATEX 95a.

## Installation and operation of electrical equipment in hazardous areas – standards and requirements

Involved with installation, acceptance and operation of electrical equipment are:

**The Legislator** having industrial supervision, trade organizations, TÜV and experts as supervisory authorities.

All **Plant Personnel** are required to observe strict guidelines such as health and safety and other work regulations that govern the maintenance and operation of electrical equipment located in the hazardous area.

**The System Specifiers** who must meet safety requirements according to IEC 31 (CO) 43, ATEX137, EN 60079-14.

# The Manufacturers of Components bound by constructional requirements set forth by EN 50014...20, 28 and 39 and ATEX 100a.

#### EN 60079-14 Installation of intrinsically safe systems in explosion hazardous areas

This standard includes the safety requirements that must be observed (e.g. identification and classification of explosion hazardous locations, temperature classes, cabling and wiring, requirements for the installation of electrical devices in zones 0 and 1).

Contrary to the standards described, which are primarily for manufacturers, this standard applies to maintenance, operators and test personnel.

As EN 60079-14 this standard also complies with the requirements of ATEX. Please note that the former exemption clause for components is no longer included. Partly an approval for individual components is now required.

# ElexV – Regulations on electrical equipment in explosion hazardous locations (old) /areas (new)

As a national directive, the ElexV is addressed to those responsible in Germany for the technological causes of the formation of explosive mixtures.

The former ElexV of 1980 related to European regulations on explosion protection of industrial electrical equipment. This "old" version constituted the legal basis for almost the entire field of explosion protection of electrical equipment. By defining explosion hazardous areas and especially by dividing these into specific zones, ElexV gained major importance as a standard for explosion protection measures. Since the introduction of the ATEX directive in 1996 a lot has changed. Definitions relating to the non-electrical aspects of new electrical equipment are now covered by the new "Explosion Protection Directive" (ExVO). The



Industri<mark>al</mark> Au<mark>tomation</mark>

amended version of ElexV of 1996 refers only to those parts which have not yet been translated into national regulations.

### ATEX 137 - Directive for system operators

The directive 1999/92/EC of the European Parliament and Council of 16 December concerning the essential health and safety requirements is intended to guard workers against the potential hazards of an explosive atmosphere. It is addressed to system operators and employers and contains binding regulations. Among other things, it requires to assess the risks resulting from a potentially explosive atmosphere, to classify areas exposed to potentially explosive atmospheres and to keep an explosion protection document.

### The explosion protection directive – (ExVO)

The ExVO determines the placing on the market of devices, protective systems and components intended for use in potentially explosive atmospheres and is the German transposition of the directive 94/9/EC. It describes the essential health and safety requirements and mandatory conformity assessment procedures. The ExVO is mainly aimed at manufacturers of devices, maintenance and test personnel.

In compliance with the directive 94/9/EC, ExVO excludes the following equipment from its scope (summarised): medical devices, explosive substances, or unstable chemicals, personnel protection equipment, seagoing vessels, offshore systems and products for military purposes.

# EN 50014 – Electrical apparatus for use in potentially explosive atmospheres – General requirements

EN 50014 contains general requirements for the construction and testing of any electrical apparatus to be used in hazardous areas.

EN 50015...20, 28 and 39 describe the technical requirements of different methods of protection:

- oil immersion (EN 50015)
- pressurised apparatus (EN 50016)

- powder filling (EN 50017)
- flameproof enclosure (EN 50018)
- increased safety (EN 50019)
- intrinsic safety (EN 50020)
- encapsulation (EN 50028)
- intrinsically safe electrical systems (EN 50039)

### EN 50020 – Protection type "Intrinsic Safety (i)"

All other methods of protection attempt to contain an explosion to the inside of the housing and to prevent penetration of an ignitable gaseous mixture.

The method of "intrinsic safety" is based on a different approach. It limits the electrical energy to such an extent, that elevated temperatures, sparcs or arcs are incapable of generating the energy needed to ignite an explosive atmosphere. Due to the limitation of electrical energy, these circuits are especially suited to application in the field of measuring, control and instrumentation. The method of "intrinsic safety" has some significant advantages over other protection methods, e.g. maintenance and wiring of live circuits. These systems are easy to handle and cost effective due to inexpensive intrinsically safe components.

#### 2 Definitions of terms

#### **Explosion**

An explosion is an exothermic reaction of a material (such as gas, fumes, or dust) occurring at a high reaction speed.

The risk of an explosion exists wherever there is the probability of an explosive atmosphere containing flammable gases or vapours, flammable liquids, combustible dust, or ignitable flyings due to handling,

processing, using and storing of these materials.

Such hazardous atmospheres can be present for instance in chemical industries, gas stations, refineries, power plants, paint shops, vehicles, sewage plants, grain mills, airports, grain silos and filling plants.

#### **Explosion hazards**

Explosion hazards exist in locations:

- in which ignitable concentrations of flammable gases or vapours can exist under normal operating conditions, or because of repair or of leakage, and when these conditions provide the probability that a dangerous fuel to air mixture will occur;
- where the explosive or ignitable mixtures can come in contact with a source of ignition and they continue to burn after ignition.

### Explosive (flammable) mixtures (general term)

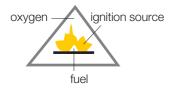
A combustible (flammable) mixture is an atmosphere containing substances that when mixed with air, gases or vapours, propel a reaction after ignition.

#### **Explosive (flammable) atmospheres**

An explosive atmosphere contains gases, vapours or dust mixed with air as well as the usual filler materials that can explode spontaneously under atmospheric conditions.

#### Dangerous explosive atmospheres

A dangerous explosive atmosphere is a mixture containing concentrations of flammable gases or vapours that, when ignited, can cause damage to persons directly or indirectly through an explosion.


#### **Explosion hazardous location**

An explosion hazardous area is a location where potentially explosive atmospheres may exist due to local operating conditions.

#### **Explosion Protection**

#### Ignition triangle

In order to have an explosion, the following three components must be present simultaneously:



Possible sources of ignition:

- hot surfaces
- flammable or explosive gases
- mechanically generated sparks
- electrical installations
- transient currents
- static electricity
- lightning, ultrasonic energy...

#### Oxidizers:

- air (21 % Oxygen)
- pure Oxygen
- oxygen releasing compounds (i.e. potassium manganate)

Fuels (flammable substances):

Flammable concentrations of gases and powders from liquids or solids which have the potential for igniting an explosion.

#### **Explosive limits**

A mixture is only explosive when its concentration falls within certain material specific limits. These limits are called the upper and lower explosive limits and are listed in according tables.

#### Flash-point temperature

The flash-point is the lowest temperature at which a liquid releases sufficient vapours that are ignitable by an energy source and extinguish when the energy source is removed.

An explosive atmosphere cannot occur when the flash-point of a material is not exceeded during storage or handling. Flammable liquids, which do not dissolve in water, constitute a source of danger.

In Germany they are classified according to VbF (directive for the installation and operation of plants where flammable liquids are stored and handled). Further parameters to evaluate the danger are the glow temperature, the minimum ignition energy and the ignition temparature. These values are listed in according tables.

### Primary and secondary methods of protection

Basically there are two methods used to prevent an explosion.

#### **Primary method of protection**

The primary method prevents formation of a dangerous atmosphere by one or more of the following measures:

- avoiding the use of flammable liquids
- increase of flash point
- limiting the concentration to safe levels
- through natural and technical ventilation
- monitoring the concentration

The primary method of protection is not described in this brochure. Please refer to the explosion protection regulations of the professional association of the chemical industry in Germany (Ex-RL) and EN 1127-1.

#### Secondary method of protection

The secondary method comprises measures to prevent ignition of an explosive mixture. Here, constructive or electrical techniques are used to

- segregate the electrical parts of the equipment, which could ignite a dangerous mixture, by keeping the explosive atmosphere away from the ignition source
- prevent an explosion by impeding the propagation to the surrounding explosive atmosphere.

The secondary protection method is frequently used, if primary protection does not provide adequate protection.

### 3 Electrical equipment featuring protection type "Intrinsic Safety"

The term "intrinsic safety" implies that the electrical energy of an intrinsically safe circuit is limited to such an extent that a thermal effect or spark is incapable of igniting an explosive atmosphere under specified conditions.

TURCK devices for use in explosion hazardous locations comply with protection type "intrinsic safety". The devices are divided into two different kinds of electrical equipment: intrinsically safe equipment and associated equipment. Marking of the devices enables clear distinction between the two types of apparatus (see point 5). Further there are devices defined as "simple equipment" which maintain an exceptional position within this field.

#### Intrinsically safe electrical apparatus

is any apparatus in which all circuits are intrinsically safe. Direct installation in hazardous locations is permitted, provided that all related requirements are met. An example is a NAMUR sensor approved according to EN 60947-5-6 or a transmitter.

#### Associated electrical apparatus

is any equipment which may incorporate both intrinsically safe and non-intrinsically safe circuits. Intrinsically safe devices may be connected to associated electrical equipment, provided that all essential conditions for this kind of interconnected assembly are fulfilled.

Associated electrical apparatus must generally be installed outside the hazardous areas. If installed within the hazardous location, additional types of protection must be provided.

All TURCK devices, type multisafe®, multimodul, interfacemodul and multicart® with intrinsically safe circuits, are classified as associated electrical apparatus.

#### Simple electrical equipment

Simple components and simple equipment not generating or storing more than 1.5 V, 0.1 A and 25 mW, do not require approval. This kind of equipment includes thermoelements, photocells, switches, resistors and simple printed circuits, which feature defined and known parameters and do not affect the intrinsically safe circuit. A definition of simple electrical apparatus is contained in EN 50020 and EN 60079-14.

#### Categories

The intrinsically safe electrical apparatus conforming to EN 50020 is divided into two categories. This classification is determined by the failure probability and the ignition capability of the intrinsically safe circuitry.

#### Category "ia"

Category "ia" indicates that the electrical apparatus should not be able to ignite a dangerous mixture during normal operation and in the event of a single fault, nor in the event of any combination of two faults. Intrinsic safety must be maintained even when two independent faults occur at the same time.

Therefore, components of any apparatus of category "ia" that are susceptible to faults must be present in triplicate.

#### Category "ib"

An electrical apparatus in category "ib" should not be capable of causing ignition during normal operation and in the event of a single fault. Intrinsic safety must be maintained in the event of a single fault.

A fault could be the failure of a component that is susceptible to disturbances. Any apparatus in category "ib" must have all components in duplicate.

#### **Groups and temperature classes**

Electrical apparatus for use in the hazardous area is classified into groups and classes based on the likelihood of an explosion danger. This is of great impor-

tance from a **safety aspect** as well as an **economical aspect** because it determines the requirements that must be met by the electrical apparatus.

Definition of **Groups** is based on the location in which the apparatus is going to be used.

- Group I classified apparatus may be used in mines susceptible to firedamp and must conform to European standards EN 50014...50020 and 28.
- Group II classified apparatus may be used in all other potentially explosive atmospheres.

Group II classified apparatus is used in all hazardous (classified) areas except mining applications where methane may be present. Depending on the application, different flammable materials with different ignition energy ratings are needed. From a practical point of view, subdividing Group II is therefore necessary and makes sense, not only for economical reasons. Subdivision of Group II equipment is determined by the different ignition energy of the flammable materials. The different groups are classified by capital letters in ascending alphabetical order according to the hazard risk of the associated material. Materials belonging to group C require less ignition energy than Group A materials (see table 1).

|      | T1              | T2              | Т3            | T4          | <b>T</b> 5 | Т6             |
|------|-----------------|-----------------|---------------|-------------|------------|----------------|
| ı    | Methane         |                 |               |             |            |                |
| II A | Acetone         | Ethyl alcohol   | Gasolines     | Acetadehyde |            |                |
|      | Ethane          | i-Amylacetate   | Diesel fuel   | Ethyl ether |            |                |
|      | Ethyl acetate   | n-Butane        |               |             |            |                |
|      | Ammonium        | n-Butyl alcohol | Aircraft fuel |             |            |                |
|      | Benzol (pure)   |                 |               |             |            |                |
|      | Acetic acid     |                 | Fuel oils     |             |            |                |
|      | Carbon monox    | kide            | n-Hexane      |             |            |                |
|      | Methanol        |                 |               |             |            |                |
|      | Propane         |                 |               |             |            |                |
|      | Toluene         |                 |               |             |            |                |
| IJВ  | City gas        | Athylene*)      |               |             |            |                |
|      | (carbonated h   | xdrogen)        |               |             |            |                |
| II C | Hydrogen        | Acethylene*)    |               |             |            | Ethylnitride*) |
|      | , 0             |                 |               |             |            | ,              |
|      | *) no authorise | d regulations   |               |             |            |                |

Tab. 1 Flammable materials - temperature classes and groups

| Temperature<br>class<br>IEC/EN<br>NEC 505-10 | Maximum surface temperature of apparatus (°C) | Ignition temperatures of flammable materials (°C) | Temperature<br>class<br>NEC 500-3 |
|----------------------------------------------|-----------------------------------------------|---------------------------------------------------|-----------------------------------|
| T1                                           | 450                                           | > 450                                             | T1                                |
| T2                                           | 300                                           | > 300 ≤ 450                                       | T2                                |
|                                              | 280                                           | > 280 ≤ 300                                       | T2A                               |
|                                              | 260                                           | > 260 ≤ 280                                       | T2B                               |
|                                              | 230                                           | > 230 ≤ 260                                       | T2C                               |
|                                              | 215                                           | > 215 ≤ 230                                       | T2D                               |
| T3                                           | 200                                           | > 200 ≤ 300                                       | T3                                |
|                                              | 180                                           | > 180 ≤ 200                                       | T3A                               |
|                                              | 165                                           | > 165 ≤ 180                                       | T3B                               |
|                                              | 160                                           | > 160 ≤ 165                                       | T3C                               |
| T4                                           | 135                                           | > 135 ≤ 200                                       | T4                                |
|                                              | 120                                           | > 120 ≤ 135                                       | T4A                               |
| T5                                           | 100                                           | > 100 ≤ 135                                       | T5                                |
| T6                                           | 85                                            | > 85 ≤ 100                                        | T6                                |

Tab. 2 Surface and ignition temperatures

#### **Explosion Protection**

#### **Temperature class**

The temperature class specifies the maximum allowable surface temperature of an apparatus. In this category, the explosion protected apparatus can be approved for different temperature classes - a decision which depends on technical and economical considerations.

In the majority of cases, explosion proof equipment for the lowest temperature can be very expensive to buy and install. By comparison, using products featuring protection type "intrinsic safety" is more efficient and cheaper. Intrinsically safe equipment for direct installation in hazardous areas requires temperature classification. For associated apparatus temperature classification is not needed.

#### Ignition temperature

The ignition temperature (defined as the temperature at which a mixture self-ignites during testing) directly relates to the temperature class. The temperature class indicates the maximum surface temperature of an apparatus and must be lower than the minimum ignition temperature of the flammable material (see table 2 - page 0-7) to prevent an ignition.

#### Device Groups and Categories According to the ATEX Directive

The ATEX directive includes a new kind of device marking which describes the application and the constructional level of safety.

This new marking per ATEX does not replace standardised marking including temperature class, explosion group and protection type.

Marking according to ATEX contains information on the area of application and the safety level achieved by the device. Marking according to EN 50020 provides detailed information on how the protection measures were realised and which applications are permitted. EN 50020 and ATEX use similar terms but the information provided may be essentially different.

The first criterion is the **Equipment Group.** This classification accords to the groups described on page 11 and defines the location in which a device may be installed.

- Device Group I: for mining underground with a potential hazard due to firedamp and/or combustible dusts.
- Device Group II: for all other locations in which a potentially explosive atmosphere exisits

The second criterion is the **Equipment Category**, defining the level of safety:

- 1: very high level of safety: devices featuring two independent means of protection; even in the event of rare device disturbances, the device remains functional and maintains the requisite level of protection
- 2: high level of safety: devices featuring one means of protection. Even in the event of frequently occurring device disturbances or equipment faults which normally have to be taken into account the device provides the requisite level of safety

 normal safety; the device ensures the requisite level of protection during normal operation.

Equipment classified as Group I (underground mining susceptible to firedamp) uses the prefix M, e. g. M1, in addition to the category classification.

The third and last criterion is the **Substance Group** which characterises the application of devices in particular atmospheres:

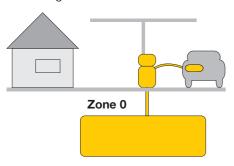
- G: explosion protection in explosive atmospheres due to gases, vapours or mists (G: gas)
- D: explosion protection in explosive atmospheres due to dusts (D: dust)

The equipment category also determines whether the device is an associated apparatus or an intrinsically safe apparatus. If it is an associated apparatus the equipment category is put into round brackets, e.g. II (1) G.

#### 4 Zone classification

According to EN 60079-10 and EN 1127-1 explosion hazardous areas are divided into zones such as flammables gases, vapours, mists and combustible dust. The classification is based on the likelihood that a dangerous explosive atmosphere occurs. The ATEX directive has re-defined the zone division as follows:

- zone 0, 1 and 2 for gases and vapours
- former zones 10 and 11, now zones 20, 21 and 22 for dusts
- zones G and M for locations used for medical purposes


| Zone                            | Likelihood of an                                         | Compliance with safety                               | Requirements fulfilled by |                                  |                                    |  |  |  |
|---------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------------|----------------------------------|------------------------------------|--|--|--|
| classification                  | explosive<br>atmosphere                                  | requirements by equipment related equipment category |                           | related equipment category       | additional equip-<br>ment category |  |  |  |
| Zone 0 (gas,)<br>Zone 20 (dust) | continuously, for<br>long periods or<br>frequently       | 2 independent means of protection                    | II                        | 1 G (for gas,)<br>1 D (for dust) | -                                  |  |  |  |
| Zone 1<br>Zone 21               | occasionally                                             | 1 independent means of protection                    | II                        | 2 G<br>2 D                       | 1                                  |  |  |  |
| Zone 2<br>Zone 22               | unlikely or<br>infrequently - for a<br>short period only | normal operation                                     | II                        | 3 G<br>3 D                       | 1 or 2                             |  |  |  |

Tab. 3 Zone classification - equipment category

#### Gases and vapours

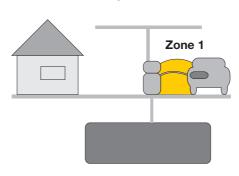
#### Zone 0

Zone 0 is a location in which ignitable concentrations of flammable gases or vapours are continuously present, or present for long periods. The example shows a gas station with zone 0 locations.



According to the previous national regulations any apparatus or parts thereof used in a zone 0 location had to be specially certified and approved for use in zone 0 locations. Further, the certificate of conformity had to mention explicitly that the equipment and parts thereof were permitted for use in zone 0. When using intrinsically safe and associated equipment as an interconnected assembly, both parts used to require a system approval.

This restriction is not included to the ATEX directive. If both parts of equipment meet the regulations for installation in zone 0, it is permitted to use the equipment accordingly without an extra approval. When electrical equipment approved by both previous and new regulations is used as an interconnected assembly, it is required to meet all requirements set forth by both directives. Additionally a system approval is needed.

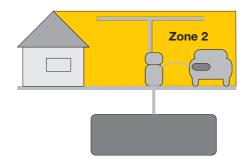

Intrinsically safe apparatus designed for use in zone 0 must meet category "ia" safety standards and must have no live contacts. Galvanic isolation between intrinsically safe and non-safe equipment is the method of choice. If earthing of the intrinsically safe circuit is required for functionality, this must be done outside zone 0, but as close as possible to zone 0.

#### Zone 1

Zone 1 are locations in which an explosive air/gas mixture is likely to occur under normal operation. Here ATEX does not incorporate any changes. The example identifies the area near the gas pump during refuelling as a zone 1 location.

Generally the following areas in industrial plants are considered to be zone 1 locations:

- in the vicinity of zone 0
- close to inspection openings
- near filling and draining devices
- inside of machinery




Any equipment certified for zone 1 must be Group IIA, IIB or IIC and at least category "ib".

#### Zone 2

Zone 2 comprises areas in which an explosive and dangerous atmosphere is unlikely to occur, but, if it does, only for a short period. The ATEX definition of zone 2 differs slightly: An explosive atmosphere should not occur, but, if it does, only infrequently and for a short period.

- any areas near zone 0 and 1
- areas near flange seals whenever standard flange joints are used
- areas near pipe lines in closed rooms



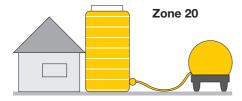
Unlike apparatus for zones 0 and 1, equipment for use in zone 2 does not require a test certificate by an authorised body. Devices for zone 2 must conform to category 3 and must meet the following criteria (EN 60079-15):

- restricted breathing enclosures (10 K overtemperature only)
- sealed enclosures
   (various test methods/requirements)
- simple pressurized enclosure (like "p" without purging)
- **limited energy** (intrinsic safety without safety factor)
- encapsulated switching devices (simple "pressurized enclosure")
- lower requirements for equipment in zone 1, e.g.
  - clearances and creepages
  - housing impact test
  - plastic materials
  - construction of lampholders and starters

#### Installation of devices in Zone 0 to 2

For installation in zones 0 to 2 (gas, vapour) it is required that intrinsically safe and associated equipment must meet at least those requirements applying to the zone in which the intrinsically safe apparatus is to be installed. If the equipment meets higher requirements, operation is obviously permitted. The national regulations apply to interconnected assembly and installation of devices. Please refer to point 7 for further information.

#### **Explosion Protection**


#### Combustible dusts

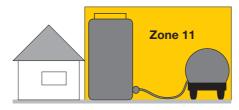
Explosion protection regulations applying to combustible dusts differ from those relating to gases and vapours due to the different hazard points. Here, ATEX also determines new regulations. Transposition into new directives and standards has not yet been completed, so that it is likely that there will be various amendments and complications.

The previous zone classification and the new division into zones according to ATEX differ in many respects. Following please find a comparison.

Previous zones 10 and 11 will be replaced by the zones 20, 21 and 22. Here the zone classification is similar to that of gases and vapours.

#### Previous Zone 10, new Zone 20




According to the previous regulations, zone 10 comprises areas in which a dangerous explosive atmosphere is constantly present or prevails for a long period.

According to ATEX, zone 20 is classified as an area in which a dangerous explosive atmosphere in form of a dust cloud is continuously present, or occurs frequently, or for a long period. The possibility of a dust deposit with a known or excessive thickness is given. The presence of dust deposits as a single event does not constitute a zone 0 classification.

As a rule, these conditions can only prevail inside an enclosure, pipes and instruments.

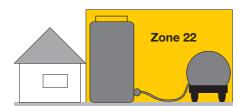
Areas, in which dust deposits occur, but where clouds of dust are not present constantly, frequently, or for a long term, do not belong to this zone.

#### Previous Zone 11, new Zone 21 and Zone 22



Zone 11 comprises areas in which it is likely that a dangerous explosive atmosphere occurs occasionally due to whirling up of dust. According to ATEX, zone 11 is subdivided into two zones, i.e. zones 21 and 22.

#### Zone 21


Areas in which, during normal operation, a potentially explosive atmosphere in form of a dust cloud can occur occasionally. Dust deposits or layers of combustible dust will usually be present.



These can be areas in the close vicinity of filling or dust extraction stations, where dust deposits are present and explosive concentrations of flammable dust mixed with air may occur during normal operation.

#### Zone 22

An area in which it is unlikely that a potentially explosive atmosphere in form of a dust cloud occurs during normal operation. If such an atmosphere occurs, then only for a short period, or in the event of dust accumulation, or in layers of combustible dust.



An example: areas in the vicinity of equipment containing dust which can escape due to leakages und where dust deposits can build up (e.g. mills from which dust is released and accumulates) could be classified as zone 22 environments.

#### Devices for use in Zone 20 to 22

Installation and operation of devices in zone 20 to 22 are subject to the national regulations (EN 50281-1-2). Thus, intrinsically safe equipment used within zones 20 to 22 must feature the corresponding approvals. Associated equipment does not require an approval for flammable dusts, an approval for gases and vapour is sufficient. It must be ensured that the limit values of intrinsic safety of the EC type examination certificate are met in case of an interconnected assembly. Then it is permitted to mark the intrinsically safe equipment, for instance as II 1 D and the associated apparatus as II (1) G. However, the marking II (1) GD is generally used in order to avoid confusion.

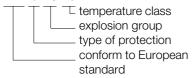
During installation it is required to observe the special conditions of dust protection. E.g. simple apparatus for use in zone 20 to 22 must have an approval, whereas this is not necessary for simple equipment in zones 0 to 2.

#### **Medical environments**

According to the previous regulations, medical environments, e.g. all equipment used for anesthesia or for articificial respiration, were subdivided into zones M and G. ATEX no longer includes medical equipment in the scope of its explosion protection regulations. The applicable legislation covering the protective aspects associated with medical products do not relate to explosion protection so that there is a juridical insecurity in this field.

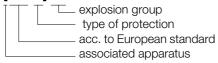


Industrial Automation


#### 5 Marking of devices

Equipment for explosion protected areas must be clearly marked. There are two different types of marking. According to CENELEC marking of an apparatus conforming to EN 50014/20 must provide the following information:

- manufacturer's name or trademark
- part number
- EEx-symbol
- ignition category (e. g. "ia")
- designated group together with the respective subdivision (e. g. IIC)
- temperature class or maximum surface temperature (for group II devices only)
- serial number (may be omitted if space is restricted)
- test authority, date and file number
- "x" after the test certificate number indicates that special conditions must be met (see certificate for special conditions)


An intrinsically safe apparatus could have the following marking:

#### EEx ia IIC T6



An associated apparatus could have the following marking:

#### [EEx ia] IIC



To date, the test certificate number of the test authority used to contain the generation number of the applicable standard to indicate the amendment status, e.g.:

#### PTB Nr. Ex-85.B.2128X

PTB Nr. authorised body
Ex- explosion protected apparatus
85. year of issue
B. generation indicator

According to ATEX marking must be as follows:

serial certificate number

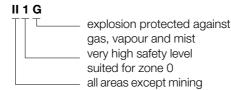
special conditions

#### **PTB 97 ATEX 2128X**

2128

Х

PTB authorised body
97 year of issue
ATEX accord. to 94/9/EC
2128 serial certificate number
X special conditions


Within the European Union the devices must meet the respective requirements. If the manufacturer fulfills these, he is permitted to affix the CE sign.

The ATEX directive extends marking.

The identification number of the notified body, which carried out the quality assurance system approval, is added to the CE sign (see point 6).



For example, the test body of the TÜV Hannover uses the identification code 0032 and the PTB in Braunschweig has the code number 0102. Additionally the year of production and the constructional level of safety must be contained in the device's marking. In case of intrinsically safe apparatus marking according to ATEX would be:



Associated equipment is identifiable by round brackets enclosing the device category:



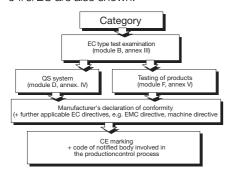
 may not be installed in hazardous areas

#### 6 Manufacturer obligations

### Certificates of conformity and EC type test certificates

An authorised body is entitled to test and certify that devices are suited for use in explosion hazardous areas and comply with the relevant regulations and standards.

Previous regulations required the manufacturer to submit a test sample to the test body and to ensure compliance with existing regulations. The authorised test body then issued the certificate of conformity and passed it on to the manufacturer. The certificate of conformity contains all relevant data associated with explosion protection.


Here, the ATEX directive also implements a change. The manufacturer is requested to supply a type test sample to an authorised inspection body, which draws up a test report to be submitted to the notified body entitled to issue the EC type examination certificate after verifying conformity. Notified bodies and external inspection bodies are registered centrally. The EC type examination certificate contains all data relevant for explosion protection.

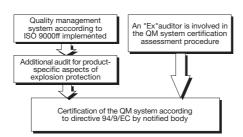
The obligation to keep a copy of this certificate is the responsibility of the manufacturer of the device. Along with the certificate, the manufacturer provides an instruction manual with all relevant Ex data. In addition, the manufacturer issues a declaration of conformity, stating that all applicable standards and directives are met. The user needs these documents to document compliance of the system installation correctly.

#### **Explosion Protection**

#### **CE** marking of equipment

Devices for use in explosion hazardous area are equipped with the CE marking and the identification code of the testing authority. The assessment procedure for CE marking is clearly defined and depends on the device category. The example shown relates to device category 1, featuring the highest safety level. The applicable annexes of the directive 94/9/EC are also shown.




Different annexes apply to the various device categories.

### Assessment of the quality assurance system

The manufacturer of intrinsically safe devices, categories 1 and 2, must have an approved quality management system. This approval is needed to ensure that the manufacturer produces the devices according to the test type sample and that conformity to relevant protection regulations is given. Assessment of the quality assurance system is carried out by a notified body. Assessment can be achieved in two different ways:

Assessment and certification can be done directly within the frame of certification according to ISO 9000ff. Approval of those fields associated with explosion protection is accomplished in cooperation with an expert of the notified body. If the ISO certificate has already been granted, it is possible to certify those parts relating to explosion protection subsequently within the frame of an additional audit.

The following illustration shows both possibilities:



TURCK's manufacturing sites for explosion protected devices are certifed according to ISO 9001 and have a quality system approval.

### 7 Guidelines for use of devices with intrinsically safe circuits

The national regulations and standards are the basis for use of devices with intrinsically safe circuits. These must be strictly observed and followed. The user is obliged to inform himself on all revisions.

The following guidelines relate to the ATEX (94/9/EG) directive of the member states of the European Union, especially to the field of explosion protection in areas exposed to hazards by gas.

If the device is classified as an associated apparatus equipped with intrinsically safe and non-intrinsically safe circuits it may not be installed in explosion hazardous areas. It is permitted to connect intrinsically safe devices located in the hazardous area to the intrinsically safe connections of this device. With the TURCK devices, series interfacemodul, multimodul, multisafe®, and multicart®, these connections are marked in blue.

When interconnecting devices within such an assembly it is mandatory to provide a proof of intrinsic safety (EN 60079-14:2004, section 12.2.5).

It is required to verify that all data related associated to explosion protection of the devices allow mutual operation. Verification must include the internal capacitances and inductances of the cables used. Please refer to section 8.1 on page 0-15 for further information.

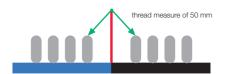
Intrinsically safe circuits should never be interconnected with non-safe circuits. Even if only interconnected once, it is possible that essential protective elements are

damaged without the user being aware of this fact. A simple function test is not suited to verify a damage of this kind.

Once intrinsically safe circuits have been connected to the non-intrinsically safe circuit, it is not permitted to use the device subsequently as intrinsically safe equipment.

The governing regulations cover installation of intrinsically safe circuits, mounting to external connections, cable characteristics and cable installation. Cables and terminals with intrinsically safe circuits must be marked and separated from non-intrinsically safe circuits or feature appropriate isolation (> 1.500 VAC) Following an excerpt from the requirements according to EN 60079-14:

- protection against external electrical or magnetic fields (e.g. power current cables)
- prevent conductor splicing of fine wires through wire sleeves
- min. cross section of 0.1 mm (also single wires of a conductor)
- protection against damaging (mechanical, chemical, thermic...)
- armouring, metal cladding, shielding of cables and lines
- common use of single-core nonsheathed cables of intrinsically and nonsafe circuits in one line is not permitted
- separate error assessment when using multi-conductor cables and lines
- when marking cables by colour, light-blue must be used.




Industrial Automation

A

Due to the open construction and the special wiring of *Eurocard* style devices, the following regulations must be followed when installing *multicart*® switching amplifiers:

- According to IEC publication 60529, multicart® style devices require a protection of at least IP20. Generally, this is achieved by installing special partiton barriers or special enclosures in the mounting rack.
- connections for intrinsically safe and non-intrinsically safe circuits must either be separated by a physical barrier so that they are at least 50 mm (thread measure) apart from each other, or each connection must be provided with cable sleeves which cannot slip off and ensure covering of all bare parts. These safety measures are not necessary if crimp snap-in type edge connectors are used.
- all edge connectors on the multicart®
   devices must be coded by a pin/plug
   coding to avoid insertion of the wrong
   module. The coding is prepared by the
   manufacturer by means of coding pins
   and holes on the contact strips according to a coding plan.
- within the mounting rack, the safety distances must also be observed.



A thread measure is defined as the distance between circuits separated by an partition barrier. The reason for this regulation is that it possible to work with live intrinsically safe circuits; thus it must avoided that these come into contact incidentally with any non-safe connection components.

This distance is only required for external connections which can be accessed by the user. The minimum distance between two intrinsically safe circuits must be 6 mm and separation from other (earthed) metal parts must be 3 mm.

The approval expires, if the device is repaired, altered or opened by a person other than the manufacturer or an expert unless the device-specific instruction manual explicitly permits such interventions. Only an expert disposes of the information on protection measures needed to assure that the device is still in accordance with the applicable regulations after such an intervention. Visible damages of the device's housing (e.g. black or brown discolouration due to heat accumulation, perforation or deformation) indicate a serious error and the device must be turned off immediately. It is required to check the connected equipment too.

Inspection of a device with regard to all relevant aspects of explosion protection may only be carried out by an expert or the manufacturer. Operation of the device is only permitted within the specified limits, e.g. the supply voltage may never exceed the maximum rating and the temperature range during operation must be strictly observed.

Intrinsically safe circuits with galvanic isolation - as is the case with TURCK devices - should not be earthed, unless not absolutely necessary from a functional point of view.

Circuits without galvanic isolation, e.g. Zener barriers, always require earthing. EN 60079-14 includes the relevant earthing regulations. Within zone 0 earthing of a circuit is not necessary. If earthing is necessary for functional reasons, then it must be carried out in close vicinity of zone 0.

Prior to every initial set-up or after any change of the device interconnection within the assembly, it must be ensured that all applicable regulations, directives and framework directives are met, that all safety regulations are fulfilled and that the device is functioning properly. Only then operation is permitted.

Mounting and connection of the device should only be carried out by qualified and trained staff familiar with the relevant national and international regulations of explosion protection to ensure correct operation.

The system operator must ensure that the system is always in the required safe condition. The system must be inspected continuously and necessary maintenance work must be carried out immediately while observing the safety regulations. The system must be tested in case of need, latest every three years.

#### **Accidents**

The operator must report any explosion which could have been caused by the electrical equipment to the supervisory body. The supervisory body is entitled to order an investigation by an expert.

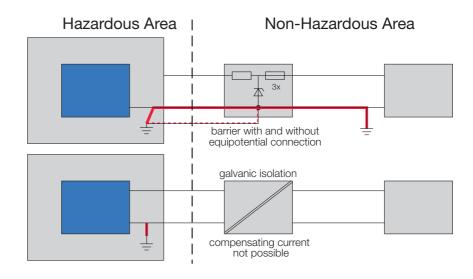
### **Explosion Protection**

#### Safety barriers

Safety barriers are considered protection devices and their function is to avoid possible errors and faults by preventing the transfer of unsafe levels of energy to the hazardous area. Possible faults are:

- excessive voltage in the hazardous area
- high current levels in the hazardous area (short-circuit)

Because barriers have no galvanic isolation, they require connection to the equipotential connection (PA) leading into the hazardous area to prevent potential variances between conducting constructional parts and the intrinsically safe circuit.


The following parameters must be observed when using safety barriers:

- Zener voltage Uz
- short-circuit current I<sub>k</sub>
- maximum current I<sub>m</sub>

In cause of fault, these maximum energy values could reach the hazardous area.

The safety parameters of the barrier are:

- the supply voltage of the barrier should always be lower than the maximum input voltage indicated on the barrier, otherwise any leakage currents occurring during normal operation could flow through the Zener diodes
- total series resistance R of the barrier
- maximum voltage U<sub>M</sub> on the hazardous
- maximum allowable external inductances L<sub>a</sub> and capacitances C<sub>a</sub>.



Section 12.2.4 of EN 60079-14 generally requires intrinsically safe circuits to be earth-free, but for safety and functional reasons earthing is permitted.

Due to an earth fault between two different potentials of remote system components, compensation currents may flow in the intrinsically safe circuit. These currents can counteract intrinsic safety, e.g. by causing excessive heat within a cable which originally was rated correctly for the intrinsically safe circuit.

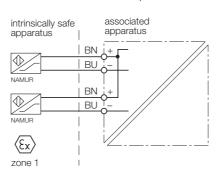
The safest method is an isolated (earthfree) design of intrinsically safe circuits. As a rule, earthing is usually not necessary for functional reasons. Earthing of an intrinsically safe apparatus at one point is permitted and in many cases needed to prevent disturbances. Metal housings of intrinsically safe equipement do not require earthing. Further details on Zener barriers are included in the data sheets available from the respective manufacturers.

#### 8 Proof of intrinsic safety

According to EN 60079-14 a proof of intrinsic safety must be provided to confirm that equipment interconnected within an assembly accords to the requirement of intrinsic safety. In this context there is a clear distinction between two basically different circuits:

- simple intrinsically safe circuit with a single associated apparatus and at least one intrinsically safe apparatus without additional supply
- 2. more than one associated apparatus which is capable of supplying electrical energy to the intrinsically safe circuit not only during normal operation but also in a fault condition.

#### 8.1 Simple circuits


The first definition of a simple intrinsically safe circuit requires to observe all electrical limit values stated in the EC type examination certificate and the power characteristics. If these conditions are met, the user is entitled to keep a proof of intrinsic safety. Inductances and capacitances of the installed cables must be taken into account.

Intrinsic safety of a simple circuit is given, if the limit values are maintained according to the following conditions:

| associated equipment | condition | intrinsically<br>safe apparatus<br>+ cable |
|----------------------|-----------|--------------------------------------------|
| U <sub>o</sub>       | ≤         | Uı                                         |
| I <sub>o</sub>       | ≤         | I <sub>I</sub>                             |
| P <sub>0</sub>       | ≤         | P <sub>I</sub>                             |
| L <sub>0</sub>       | ≥         | $L_1 + L_C$<br>$C_1 + C_C$                 |
| C <sub>0</sub>       | ≥         | $C_I + C_C$                                |

The cable characteristics provided by the manufacturer should be used. Should these not be available, it is recommended to use the following typical values (BASEEFA newsletter no. 3, October 1980):  $L_{\rm C} = 1~{\rm mH/km}\,/\,C_{\rm C} = 110~{\rm nF/km}$ 

The connection of proximity switches to isolating switching amplifiers, or 2-wire transmitters to isolating transducers, or solenoid valves to a valve control module can be considered as simple circuits.



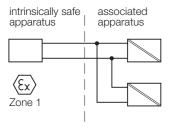
The limit value indexes of the old certificate of conformity and the new EC type examination certificate differ.

In this overview the indexes according to EN 60079-14 are used. Index "0" stands for maximum output values and "i" for maximum input values.

The proof of intrinsic safety should be laid down in a standardised document to facilitate clear documentation.

The document should contain the date, the name of the manufacturer, the circuit type and the type code. A possible form of documentation is shown below.

| As         | Associated equipment                    |               |              |                     |               |                    |                       |                        |                        |                        |                        |
|------------|-----------------------------------------|---------------|--------------|---------------------|---------------|--------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|
| Тур        | эе                                      | Type name     | Manufacturer | Approval Number     | Expl. Group   | Device<br>Category | U <sub>0</sub> [V]    | l <sub>0</sub><br>[mA] | P <sub>0</sub><br>[mW] | L <sub>0</sub><br>[mH] | C <sub>0</sub><br>[nF] |
| lsc<br>ing | olat. switch-<br>g amplifier            | MC13-36AEx0-R | TURCK        | TÜV 03 ATEX 2378    | [EEx ia] IIC  |                    | 9.6                   | 11.0                   | 26.0                   | 0.9                    | 1100                   |
| Int        | Intrinsically safe electrical equipment |               |              |                     |               |                    |                       |                        |                        |                        |                        |
| No.        | Туре                                    | Type name     | Manufacturer | Approval Number     | Expl. Group   | Device<br>Category | U <sub>1</sub><br>[V] | l <sub>i</sub><br>[mA] | P <sub>I</sub><br>[mW] | L <sub>i</sub><br>[mH] | C <sub>i</sub><br>[nF] |
| 1          | Proximity switch                        | BIM-INT-Y1X   | TURCK        | KEMA 01 ATEX 1264 X | EEx ib IIC T6 |                    | 15.0                  | 60.0                   | 100.0                  | 50.0                   | 30.0                   |
|            |                                         |               |              |                     |               |                    |                       |                        |                        |                        |                        |


|     |                                                                                                                         |                            |                  |                                          |                         | Calegory                                | [v]            | [IIIA] | [IIIVV] | [IIIII] | [IIIF] |
|-----|-------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|------------------------------------------|-------------------------|-----------------------------------------|----------------|--------|---------|---------|--------|
| 1   | Proximity switch                                                                                                        | BIM-INT-Y1X                | TURCK            | KEMA 01 ATEX 1264 X                      | EEx ib IIC T6           |                                         | 15.0           | 60.0   | 100.0   | 50.0    | 30.0   |
| 2   |                                                                                                                         |                            |                  |                                          |                         |                                         |                |        |         |         |        |
|     | Cable inductances and capacitances: (Manufacturer data or $L_C = 1$ mH/km, $C_C = 110$ nF/km) Total cable length: 130 m |                            |                  |                                          |                         | 14.3                                    |                |        |         |         |        |
|     | Total inductances and capacitances: $(\Sigma L_i \text{ and } \Sigma C_i)$ 50.13 44.3                                   |                            |                  |                                          |                         | 44.3                                    |                |        |         |         |        |
| Int | rinsic safety is g                                                                                                      | given if the following cor | iditions are ful | filled: $U_0 \le U_1 \qquad I_0 \le I_1$ | $P_0 \le P_1$ $L_0 \ge$ | $\geq \Sigma L_1$ $C_0 \geq \Sigma C_0$ | O <sub>I</sub> |        |         |         |        |

Example of a "Proof of intrinsic safety"

#### **Explosion Protection**

### 8.2 Interconnection/Assembly of several devices

The second case considers interconnection of several active associated devices. It differs essentially from the first case. Here it is not permitted to apply the electric limit values of the EC type examination certificate for the proof of intrinsic safety.



Different limit values apply to an assembly of the individual associated apparatus. Such an assembly will always be classified as equipment according to category "ib", even if the single apparatus accords to category "ia". An assembly may therefore not be installed in zone 0. A detailed description of interconnection and assembly is beyond the scope of this catalogue. The related calculation methods and an example are contained in annexes A and B of EN 60079-14. Additionally, the ignition curves of IEC 60079-11 are needed. EN 50020 also contains the ignition curves.

#### 8.3 Non-linear characteristics

When interconnecting associated apparatus whose typical curves are not entirely linear, a special procedure must be applied. This procedure is explained precisely in report number PTB-THEx-10 of the German PTB in Braunschweig (ISBN 3-89701-440-8).

#### 9 Approvals outside the EU

Equipment certified according to the ATEX directive may be placed on the market, installed and put into service within the member states of the European Union. Even though Switzerland does not belong to the EU, approvals according to ATEX are accepted. An approval by SEV is not required, if the customer provides the mandatory documentation, i.e. the instruction manual, the EC type examination

certificate, the CE declaration and the certificate of the quality management audit relating to explosion protection.

Many states outside the European Union explicitly request an own national approval. Therefore TURCK devices feature approvals for many different countries. Own approvals are required e.g. in the USA, Canada, China, Japan, Australia, CIS states, Hungary or in the Czech Republic, whereas other states accept approvals issued by other states. For this reason it is indispensable to be familiar with the national requirements.

In many states approvals are granted for a certain period only. Therefore it is recommended to check if the approval has expired or has been prolonged accordingly. If an approval expires after installation, many countries accept further operation.

Approvals according to ATEX and approvals in the USA and Canada are not subject to a time limit.

Apart from the national approvals there are also specific installation and operation requlations. These are supplied together with devices featuring approvals for the USA and Canada. The TURCK brochure "Understanding Hazardous Area Sensing" (in English) gives insight into explosion protection in the United States and can be provided on request.

#### 10 Approvals and certififcates of conformity via Internet

TURCK offers their customers to view all valid approvals and to download these as PDF files (Acrobat Reader, from version 5.0 onwards):

#### www.turck.com

- ⇒ Headquarters
  - ⇒ Download
    - ⇒ Approvals



#### **General Technical Data and Guidelines**

| Sur | nmary of Topics                 | Page |
|-----|---------------------------------|------|
| 1   | Notes for mounting and          |      |
|     | installation                    | 0-17 |
| 2   | Environmental conditions        | 0-17 |
| 3   | Relay outputs                   | 0-17 |
| 4   | Electronic outputs              | 0-17 |
| 5   | Analogue outputs                | 0-17 |
| 6   | Time and date processing        | 0-18 |
| 7   | Installation of cables          | 0-18 |
| 8   | Configuration and parameterisat | ion  |
|     | via PACT <i>war</i> e™          | 0-18 |
| 9   | General data                    | 0-19 |
| 10  | Front label                     | 0-19 |
| 11  | Parameter programming           |      |
|     | with buttons                    | 0-19 |
| 12  | Card adjusment via PC and       |      |
|     | PACTware <sup>™</sup> software  | 0-20 |
| 13  | Scanning of parameters          | 0-20 |
| 14  | Saving of parameters            | 0-20 |
| 15  | ESC lockout                     | 0-20 |
|     |                                 |      |
|     |                                 |      |

#### 1 Notes for mounting and installation

Mounting and installation have to be performed conform to the valid regulations and the operator is obliged to ensure that they are observed. On devices with intrinsically safe connections, special knowledge in the field of explosion protection is required.

Under certain conditions, the devices must be protected against dust, dirt, humidity and other environmental influences, as well as against mechanical damage, unintentional touching and alteration of parameters. It must be ensured that heat is conducted away from the devices.

#### 2 Environmental conditions

The devices listed in this catalogue are designed for normal industrial use under normal atmospheric conditions. This does not exclude non-condensing humidity. The operational temperature range is stated for every device. Sources of intensive solar radiation or other heat sources should be avoided.

Use in environments with high-energy radiation should be avoided due to the use of semi-conductor components in the devices. Usage may still be possible after a thorough examination of the application and further clarification by TURCK. The devices have been designed and

developed to the current state-of-the-art in the field or electromagnetic compatibility. Conformity to the respective guidelines is confirmed by the use of the CE mark. However, the operator is urged to ensure that his installation is designed for EMC compatibility.

#### 3 Relay outputs

The use of relay couplers is limited by their relatively low switching frequencies and limited contact life. TURCK uses high quality relays with a mechanical life of at least 20 mio. switching operations. The electrical life depends strongly on the connected load type and can drop to approx. 1 mio. switching operations, when the relay contacts are subject to maximum load. All switching capacity and switching current indications refer to resistive loads. Lower values apply to inductive or capacitive loads, such as solenoid valves or motors. For inductive loads it is required to observe the relay-specific load limits, which can be provided by TURCK on request. If the relay coupler is directly connected to a contactor, the contactor must be equipped with a protective circuitry at the coil connection. Relays are designed to switch large voltage and current ranges. Once that a high current has been switched, low currents or voltages cannot be switched subsequently.

#### 4 Electronic outputs

Electronic outputs are typically bouncefree and fast switching devices. Compared to relay contacts, the current and voltage ranges of an electronic output are clearly defined depending on the kind of output used. Transistor outputs are only suited to low currents and DC voltages, e.g. a PCL input. Switching frequencies are above 1 kHz. In order to protect transistors against overload, they are equipped with a short-circuit protection. Due to the resulting voltage drop it is not possible to switch the low level of TTL inputs. Mosfets are a particular kind of transistor. Based on their special design and circuitry, they can be used to switch AC and DC currents of up to 250 V. Their switching frequency is lower than that of

transistors, but the switching current may be higher. Thyristor and Triac outputs are used in high current and AC voltage applications.

#### 5 Analogue outputs

In addition to switching outputs, analogue voltage and current outputs are also available. A voltage output is a kind of internally regulated voltage source. The output provides a measurable voltage. The minimum load resistance specified in the data sheet must be observed.

When using current outputs, active and passive outputs must be distinguished. Active outputs are an internally regulated current source and provide measurable current signals. The load ratings of the data sheet may not be exceeded. Passive current outputs are internally controlled current sink mode devices. The current sink mode output requires voltage supply to control the current flow. Passive current outputs are normally used in conjunction with remote processors featuring input circuits for connection of 2-wire isolating transducers or transmitters.

#### **General Technical Data and Guidelines**

#### 6 Time and date processing

With the exception of the PACTware™ compatible devices, **no** processing of the time and date information is undertaken.

#### 7 Installation of cables

Electrical cables are the connection between field and interface devices and are important functional components of an automation system. Therefore it is advisable to observe some frame conditions when installing cables. Cables must be protected against negative environmental influences.

Chemical resistance, temperature rating, resistance against ultraviolet radiation and applicable operation standards are just some of the parameters which should be taken into account.

By choosing an appropriate installation method it is possible to prevent damages, e.g. through vehicles. When connected to field devices, the cable should be routed in a conduit. If connected to vibrating machines or moving parts, some extra cable should be added as a reserve. The minimum bending radius must also be observed. Cable manufacturers provide information on cable installation and valuable installation hints. Data integrity and reliability depend strongly on the cable types and installation methods.

Sensor cables should always be installed separately from the power cables. Electromagnetic interferences must also be avoided. Cable connections to motors which are controlled via frequency converters should be protected according to the manufacturer's safety specifications. If long cables are needed, it is recommended to use shielded and earthed cables. The line resistance of sensors may not exceed 50  $\Omega$  (EN 60947-5-6); the maximum cable length is determined by the cable's cross-section:

$$\begin{array}{ccc} & R \times S & R = \text{line resistance } [\Omega] \\ & S = \text{cable cross-section} \\ & \delta & [\text{mm}^2] \\ & \delta = \text{resistivity} \\ & [\Omega \times \text{mm}^2/\text{m}] \\ & I = \text{ cable length } [\text{m}] \end{array}$$

### 8 Configuration and parameterisation via PACTware™



PACTware™ stands for "Process Automation Configuration Tool" and is an opensource configuration software via which the manufacturers can integrate the operation of their field devices. The optimisation of the device operation is the key objective with the PACTware™ concept.

Contrary to the concept of writing to devices via a text file (Device Description = DD), PACTware™ uses a universal interface (Field Device Tool = FDT) between the frame program and the individual software modules for device operation. Modern and user-friendly operating concepts can be implemented as a result.

FDT specifies an interface in order to use the software modules for field devices (Device Type Manager = DTM) in various applications from different manufacturers. Some of the TURCK field devices can be configured via PACTware™. The DTMs required are contained in a free of charge basic version which is not equipped with all functional features, as well as in a Professional version.

More information about this topic can be found under **www.pactware.de**. The PACT*ware*™ software and the DTM can be downloaded free from the TURCK homepage **www.turck.com**.



#### 9 General data

multicart® modules offer multiple programming possibilities and are thus suited to a wide variety of applications.

There are two ways of altering factory settings:

- a set of toggle switches on the front panel (menu driven)
- or via personal computer (PC)

The attributes of each model are easy to change. Enclosed with each card is a diagram with the programming sequence showing all possible settings for each parameter in several languages.

#### 10 Front label

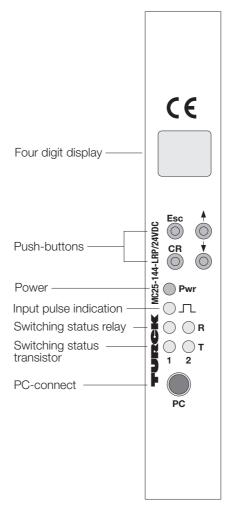
All settings necessary for operation of the card are displayed on the front label. The label indications depend on the type of device and can differ from those shown on the right.

During operation or active mode, the green "Power" LED is lit and the display shows the actual value. If a card has setpoint outputs, yellow LEDs indicate if the limit value of the respective output is below the setpoint. The respective setpoint relay and the transistor output de-energise and the LED stays off when the setpoint is reached.

If the card is provided with built-in input alarms for wire-break or short-circuit conditions, the alarm outputs activate during a malfunction, an "ERR" (Error) message appears on the display and the green "Power" LED changes to red. If a card has setpoint outputs for status indications, the outputs de-activate (relay de-energised, transistor not conducting), unless no other parameters have been programmed.

### 11 Parameter programming with buttons

Menu-assisted adjustments are carried out with the two buttons on the front of the card. ESC up (left top button on the front panel) interrupts the monitoring operation and the "Power" LED turns off. The programming LED "Progr." illuminates and "PARA" appears in the display to indicate that the first parameter can be set.


Each of the parameters of the main menu can be selected with the right button. The selected parameter is verified by parameter value appearing in the display, or a message prompt referring to a submenu.

On each card, the first card parameter indicating "PARA" in the display is a submenu used to access and program all specific parameters.

The selected parameter is verified by activating ENTER (left button in down position). When a submenu has been selected, the parameter value is adjusted using the right toggle switch. Activating ENTER a second time saves the adjusted parameter.

The right hand buttons are used to change the parameters. If the desired value has been set, activating the ENTER key saves the parameter. "SAVE" will briefly appear in the display to indicate that the parameter has been saved. Switching to ESC terminates adjustment of the selected parameter without saving.

ESC is used to switch between the submenu and the main menu. A second activation of the ESC switch initiates display of the actual measurement value and the "Power" LED illuminates.



#### **General Technical Data and Guidelines**

### 12 Adjustment of the card via PC under usage of PACTware™



PACTware\*

For card programming via PC the adapter IM-Prog is needed. The card is connected to the RS232 interface of the PC via the adapter.

The frame application PACTware™ and the basic DTMs can be downloaded free of charge via the Internet under www.turck.com. The required DTMs are available in a basic version (with limited functions) as well as in a professional version. The professional version with special functions can be activated via a billable license key.

The special functions are:

#### • Monitor function:

The measuring value and the status of the inputs and outputs can be displayed in a monitor window. The cyclic update function can be de-activated.

#### • Print-out function:

The parameters can be printed in three different categories:

- Off-line parameterisation (all parameters)
- Measuring value (frequency, rotational speed, output current, measuring span of output current in %), output voltage, measuring span of output voltage in %),
- Diagnostics (all diagnostic bits)

#### • Trend viewer:

A selection of measuring values can be recorded cyclically. Thus the modification of values can be monitored in the on-line mode. Recorded value curves can be stored in a specially formatted text file.

#### • Memory function:

With this function the parameters are stored.

#### 13 Scanning of parameters

Each parameter can be scanned while the system is operating. To do this, activate the right top button (up) until the desired parameter is displayed.

Using ESC (the left top button switch on the front panel) returns the card to the measuring mode and display of actual data. This can also be done when the ESC key is disabled. If no button is activated for 10 seconds, the display automatically resets to the actual value.

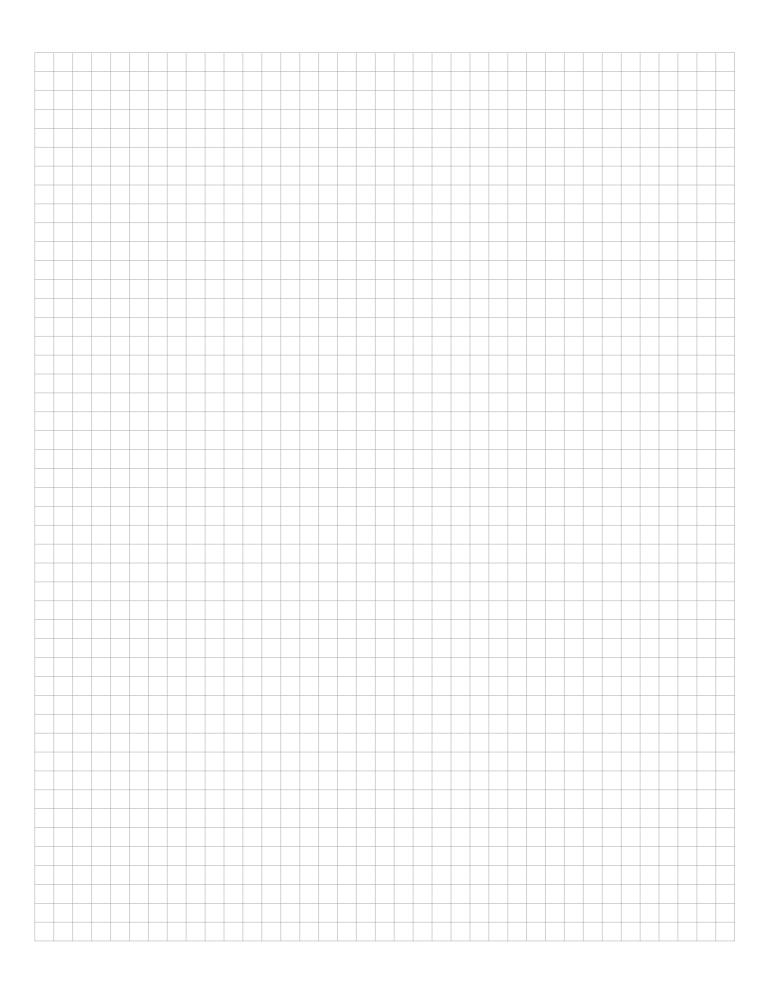
#### 14 Saving of parameters

All card parameters are saved in case of power failure in an EEPROM memory.

#### 15 ESC lockout

Unauthorised front panel changes can be prevented by lockout of the ESC toggle switch. This is done as follows:

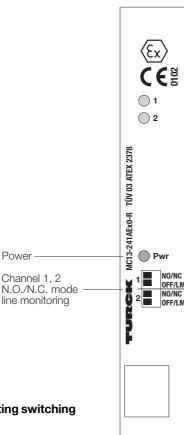
- plug the connector (included with the card) into the V.24/RS232 interface of the card
- de-activate the ESC key via the PC program (see above).

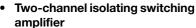

The parameter scan during system operation is not affected by the lockout of the ESC key.



# ISOLATING SWITCHING AMPLIFIERS

| Isolating Switching Amplifiers      | Page |
|-------------------------------------|------|
| MC13-241AEx0-R/24VDC                | 1-3  |
| MC13-241AEx0-T/24VDC                | 1-5  |
| MC13-36AEx0-R/24VDC                 | 1-7  |
| MC13-41Ex0-RP/24VDC                 | 1-9  |
| MC13-441AEx0-R/24VDC                | 1-11 |
| MC13-441AEx0-T/24VDC                | 1-13 |
| MC13-451AEx0-R/24VDC                | 1-15 |
| MC13-451AEx0-RP/24VDC               | 1-17 |
| MC13-4 <mark>51AEx0-T/</mark> 24VDC | 1-19 |
| MC13-481AEx0-R/24VDC                | 1-21 |
| MC13-8Ex0-R/24VDC                   | 1-23 |
| MC13-8Ex0-P/24VDC                   | 1-23 |
| MC16-41Ex0-RP                       | 1-27 |
| MC16-42 <mark>Ex</mark> 0-TP        | 1-29 |
|                                     |      |






Industrial Automation

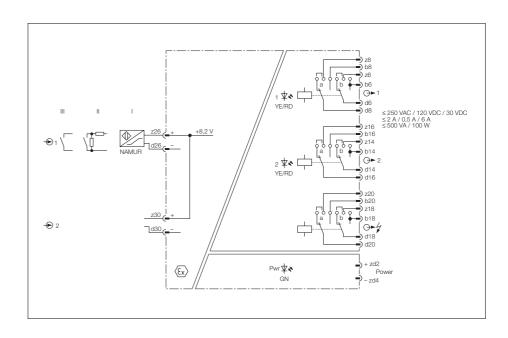
### Isolating Switching Amplifier MC13-241AEx0-R/ 24VDC two channels





- Intrinsically safe input circuits EEx ia
- Area of application according to ATEX: II (1) GD
- Galvanic isolation between input, output and supply circuit
- Input circuit monitoring for wirebreak and short-circuit conditions (can be disabled)
- Two relay outputs with two change-over contacts each
- Additional common alarm output
- Surge suppressor circuit
- 32- and 48-pole multi-point connectors may be used
- Outputs with progammable N.O. or N.C. mode per channel




The isolating switching amplifiers MC13-241AEx0-R/... feature two channels and intrinsically-safe input

circuits. Sensors according to EN 60947-5-6 (NAMUR) (I) or mechanical contacts (II +III) may be connected.

Each channel is equipped with top-grade gold-plated dublet change-over contacts. These are suited for reliable switching of circuits with min. currents of 50  $\mu$ A and max. currents up to 2 A.

The green LED on the front cover indicates that the device is powered. The two dual colour LEDs indicate the switching status (yellow) as well as fault conditions (red). When the input circuit monitoring feature is activated, red illuminates to indicate a fault in the input circuit and the respective output relay is de-energised.

There is an additional common alarm output for indication of errors in the input circuits of the two channels. The input circuits can be monitored for wire-break and short-circuit conditions. The input circuit monitoring function as well as the output mode can be adjusted via the front panel DIP switches.



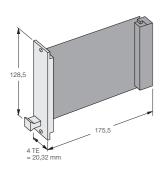


#### Isolating Switching Amplifier MC13-241AEx0-R/24VDC

In case of an error in one of the input circuits, the common alarm output is switched off (relay de-energised); if the device is powered and the inputs are errorfree, the alarm circuit is switched (relay energised).

If mechanical contacts are used, the wirebreak and short-circuit monitoring function must be disabled or the contact must be wired to a resistor circuitry (see Fig. 1).

| Fig. 1 12,2 kΩ 1022 kΩ                       |                                                              |
|----------------------------------------------|--------------------------------------------------------------|
| 470 Ω 470 Ω<br>0,6 W 0,6 W<br>10 kΩ<br>0,6 W | Ready-made<br>resistor module<br>WM1<br>Ident-no.<br>0912101 |

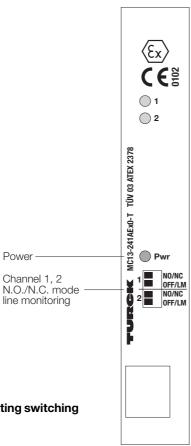

#### Function programming via front panel **DIP** switches

The functions are programmed via front panel DIP switches on the card separately for each channel.



NO normally open mode NC normally closed mode LM wire-break and short-circuit monitoring enabled **OFF** wire-break and short-circuit

monitoring disabled




| Туре                                                             | MC13-241AEx0-R/24VDC                         |
|------------------------------------------------------------------|----------------------------------------------|
| Ident-no.                                                        | 9024701                                      |
|                                                                  | 00.4. 07.6.VD0                               |
| Supply voltage U <sub>B</sub>                                    | 20.427.6 VDC                                 |
| Ripple W <sub>pp</sub>                                           | ≤ 10 %                                       |
| Overvoltage threshold                                            | 33 V ± 1.5 V                                 |
| Protection against faulty connection                             | ≤ 250 V                                      |
| Current consumption                                              | ≤ 100 mA                                     |
| Galvanic isolation                                               | between input circuit and output circuit and |
|                                                                  | supply voltage for 250 V <sub>rms</sub>      |
|                                                                  | test voltage 2.5 kV <sub>rms</sub>           |
| Input circuits                                                   | according to EN 60947-5-6 (NAMUR),           |
| input circuits                                                   | -                                            |
| One of the other contacts to the                                 | intrinsically safe according to EN 50020     |
| Operating characteristics                                        | 0.014                                        |
| - Voltage                                                        | 8.2 V                                        |
| - Current                                                        | 8.2 mA                                       |
| Switching threshold                                              | 1.55 mA                                      |
| Hysteresis                                                       | 0.2 mA                                       |
| Wire-break threshold                                             | ≤ 0.1 mA                                     |
| Short-circuit threshold                                          | ≥ 6 mA                                       |
| Output circuits                                                  | two relay outputs                            |
| Contact configuration                                            | two change-over contacts, twin contact,      |
| Contact Configuration                                            | Ag alloy + 3 µm Au                           |
| Switching voltage                                                | ≤ 250 VAC/120VDC/30VDC                       |
| -                                                                | ≤ 2 A/0.5 A/6 A                              |
| Switching current                                                |                                              |
| Switching capacity                                               | ≤ 500 VA/100 W                               |
| Switching frequency                                              | ≤ 10 Hz                                      |
| I.S. approval acc. to certificate of conformity                  | TÜV 03 ATEX 2378                             |
| Maximum nominal values                                           |                                              |
| <ul> <li>No load voltage U<sub>0</sub></li> </ul>                | 9.6 V                                        |
| - Short-circuit current I <sub>0</sub>                           | 11 mA                                        |
| - Power P <sub>0</sub>                                           | 26 mW                                        |
| Internal Inductances/Capacitances L <sub>i</sub> /C <sub>i</sub> | 0.1 mH/negligible                            |
| External Inductances/Capacitances L <sub>0</sub> /C <sub>0</sub> |                                              |
| - [EEx ia] IIC                                                   | 0.9 mH/1.1 µF                                |
| - [EEx ia] IIB                                                   | 4.9 mH/4.1 μF                                |
| Marking of device                                                | <ul><li></li></ul>                           |
| LED indications                                                  |                                              |
| LED indications  - Power                                         | green                                        |
| <ul><li>Switching status/Fault indication</li></ul>              |                                              |
| (2-colour-LED)                                                   | 2 x yellow/red                               |
| Eurocard                                                         | 100 x 160 mm (DIN 41494)                     |
| Base material                                                    | Epoxy-resin, glass-fibre reinforced,         |
| 2400 Material                                                    | quality class FR4                            |
| Front plato                                                      | plastic, 4TE = 20.32 mm                      |
| Front plate                                                      |                                              |
|                                                                  | for individual interlocking                  |

| Eurocard                    | 100 x 160 mm (DIN 41494)                                       |
|-----------------------------|----------------------------------------------------------------|
| Base material               | Epoxy-resin, glass-fibre reinforced, quality class FR4         |
| Front plate                 | plastic, 4TE = 20.32 mm<br>for individual interlocking         |
| Connection                  | connectors according DIN 41612, style F, 32 poles (series z+d) |
| Operating temperature range | -25+70 °C                                                      |
| Coding (no. 19)             |                                                                |

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

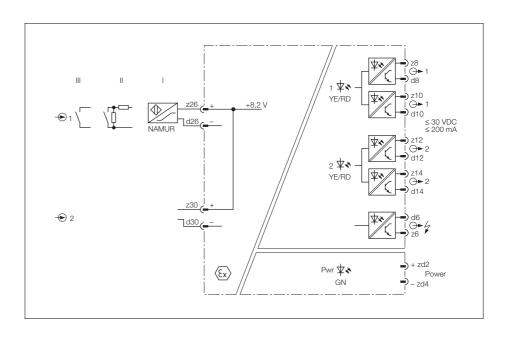




Isolating Switching Amplifier MC13-241AEx0-T/ 24VDC two channels



- Two-channel isolating switching amplifier
- Intrinsically safe input circuits EEx ia
- Area of application according to ATEX: II (1) GD
- Galvanic isolation between input, output and supply circuit
- Input circuit monitoring for wirebreak and short-circuit conditions (can be disabled)
- Two potential-free transistor outputs per channel, short-circuit protected
- Additional common alarm output
- Surge suppressor circuit
- Outputs with progammable N.O. or N.C. mode per channel


The isolating switching amplifiers MC13-241AEx0-T/... feature two channels and intrinsically-safe input

circuits. Sensors according to EN 60947-5-6 (NAMUR) (I) or mechanical contacts (II +III) may be connected.

Each channel is equipped with potential-free short-circuit protected transistor outputs. The short-circuit protection is thermal (non-cyclic).

The green LED on the front cover indicates that the device is powered. The two dual colour LEDs indicate the switching status (yellow) as well as fault conditions (red). When the input circuit monitoring feature is activated, red illuminates to indicate a fault in the input circuit and the respective output transistor is disabled.

There is an additional common alarm output for indication of errors in the input circuits of the two channels. The input circuits can be monitored for wire-break and short-circuit conditions. The input circuit monitoring function as well as the output mode can be adjusted via the front panel DIP switches.





#### Isolating Switching Amplifier MC13-241AEx0-T/24VDC

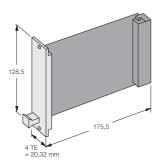
In case of an error in one of the input circuits, the common alarm output is switched off (transistor inhibited); if the device is powered and the inputs are error-free, the alarm circuit is switched (transistor conductive).

If mechanical contacts are used, the wirebreak and short-circuit monitoring function must be disabled or the contact must be wired to a resistor circuitry (see Fig. 1).

| Fig. 1 | 12,2 kΩ                             |
|--------|-------------------------------------|
| \      | 1022 kΩ                             |
|        | 470 Ω 470 Ω 0,6 W 0,6 W 0,6 W 0,6 W |

Ready-made resistor module WM1 Ident-no. 0912101

#### Function programming via front panel **DIP** switches


The functions are programmed via front panel DIP switches on the card separately for each channel.



NO NC LM

**OFF** 

normally open mode normally closed mode wire-break and short-circuit monitoring enabled wire-break and short-circuit monitoring disabled



| Туре                                 | MC13-241AEx0-T/24VDC                         |
|--------------------------------------|----------------------------------------------|
| ldent-no.                            | 9024604                                      |
| Supply voltage $\cup_{B}$            | 20.427.6 VDC                                 |
| Ripple W <sub>pp</sub>               | ≤ 10 %                                       |
| Overvoltage threshold                | 33 V ± 1.5 V                                 |
| Protection against faulty connection | ≤ 250 V                                      |
| Current consumption                  | ≤ 80 mA                                      |
| Galvanic isolation                   | between input circuit and output circuit and |
|                                      | supply voltage for 250 V <sub>rms</sub>      |
|                                      | test voltage 2.5 kV <sub>rms</sub>           |

| Output airquita             | transiator autouta, natantial fras       |
|-----------------------------|------------------------------------------|
|                             |                                          |
| Short-circuit threshold     | ≥ 6 mA                                   |
| Wire-break threshold        | ≤ 0.1 mA                                 |
| Hysteresis                  | 0.2 mA                                   |
| Switching threshold         | 1.55 mA                                  |
| <ul> <li>Current</li> </ul> | 8.2 mA                                   |
| <ul><li>Voltage</li></ul>   | 8.2 V                                    |
| Operating characteristics   |                                          |
|                             | intrinsically safe according to EN 50020 |
| Input circuits              | according to EN 60947-5-6 (NAMUR),       |
|                             |                                          |

| Output circuits     | transistor outputs, potential-free,    |
|---------------------|----------------------------------------|
|                     | short-circuit protected                |
| Switching voltage   | ≤ 30 VDC                               |
| Switching current   | ≤ 200 mA                               |
| Voltage drop        | appr. 4 V/200 mA and appr. 2.7 V/50 mA |
| Switching frequency | ≤ 1 kHz                                |

| I.S. approval acc. to certificate of conformity                  | TÜV 03 ATEX 2378  |
|------------------------------------------------------------------|-------------------|
| Maximum nominal values                                           |                   |
| <ul> <li>No load voltage U<sub>0</sub></li> </ul>                | 9.6 V             |
| <ul> <li>Short-circuit current I<sub>0</sub></li> </ul>          | 11 mA             |
| - Power P <sub>0</sub>                                           | 26 mW             |
| Internal Inductances/Capacitances L <sub>i</sub> /C <sub>i</sub> | 0.1 mH/negligible |
| External Inductances/Capacitances L <sub>0</sub> /C <sub>0</sub> |                   |
| - [EEx ia] IIC                                                   | 0.9 mH/1.1 μF     |
| – [EEx ia] IIB                                                   | 4.9 mH/4.1 μF     |
| Marking of device                                                |                   |

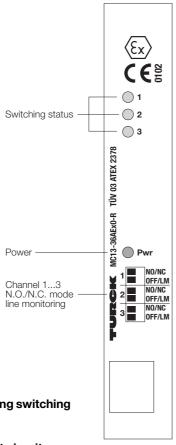
2 x yellow/red

| LED indication                    | S                    |       |
|-----------------------------------|----------------------|-------|
| <ul><li>Power</li></ul>           |                      | green |
| <ul> <li>Switching sta</li> </ul> | tus/Fault indication |       |

(2-colour-LED)

Coding (no. 17)


| Eurocard                    | 100 x 160 mm (DIN 41494)             |
|-----------------------------|--------------------------------------|
| Base material               | Epoxy-resin, glass-fibre reinforced, |
|                             | quality class FR4                    |
| Front plate                 | plastic, 4TE = 20,32 mm              |
|                             | for individual interlocking          |
| Connection                  | connectors according DIN 41612,      |
|                             | style F, 32 poles (series z+d)       |
| Operating temperature range | -25                                  |


Operating temperature range -25...+70 °C

> • 0 0 0 0 • • 0 0 0 0 0 0 0 • 0 b

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

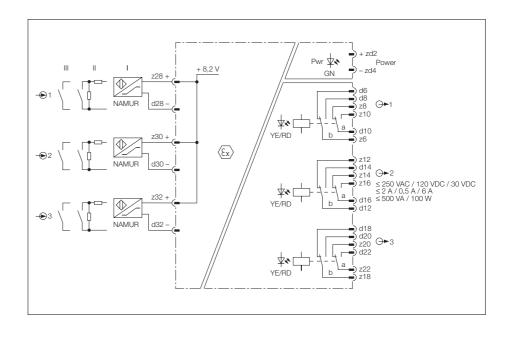






- Three-channel isolating switching amplifier
- · Intrinsically safe input circuits EEx ia
- · Area of application according to ATEX: II (1) GD
- Galvanic isolation between input, output and supply circuit
- · Three relay outputs with two change-over contacts each
- · Input circuit monitoring for wirebreak and short-circuit conditions (can be disabled)
- · Outputs with progammable N.O. or N.C. mode per channel

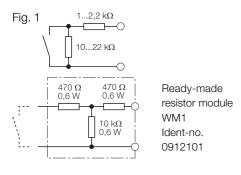



The isolating switching amplifiers MC13-36AEx0-R/... feature three channels and intrinsically-safe input

circuits. Sensors according to EN 60947-5-6 (NAMUR) (I) or mechanical contacts (II + III) may be connected.

Each channel is equipped with a relay output with two top grade, gold-plated doublet change-over contacts. Thus circuits with minimum currents of 50 µA and maximum currents of up to 2 A can be securely switched.

The input circuits can be monitored for wire-break and short-circuit conditions. The input circuit monitoring function as well as the output mode can be adjusted via the front panel DIP switches.


The green LED on the front cover indicates that the device is powered. The three dual colour LEDs indicate the switching status (yellow) as well as fault conditions (red). When the input circuit monitoring feature is activated, red illuminates to indicate a fault in the input circuit and the respective output relay is de-energised.





#### Isolating Switching Amplifier MC13-36AEx0-R/24VDC

If mechanical contacts are used, the wirebreak and short-circuit monitoring function must be disabled or the contact must be wired to a resistor circuitry (see Fig. 1).



| Туре                   | MC13-36AEx0-R/24VDC                                          |
|------------------------|--------------------------------------------------------------|
| Ident-no.              | 9023602                                                      |
| Supply voltage $U_B$   | 20.427.6 VDC                                                 |
| Ripple W <sub>pp</sub> | ≤ 10 %                                                       |
| Power consumption      | ≤ 2.2 W                                                      |
| Galvanic isolation     | between input circuit and output circuit and                 |
|                        | supply voltage for 250 $V_{rms}$ test voltage 2.5 $kV_{rms}$ |
| Input circuits         | according to EN 60947-5-6 (NAMUR).                           |

|                           | intrinsically safe according to EN 50020 |
|---------------------------|------------------------------------------|
| Operating characteristics |                                          |
| - Voltage                 | 8.2 V                                    |
| - Current                 | 8.2 mA                                   |
| Switching threshold       | 1.55 mA                                  |
| Hysteresis                | 0.2 mA                                   |
| Wire-break threshold      | ≤ 0.1 mA                                 |
| Short-circuit threshold   | ≥ 6 mA                                   |
|                           |                                          |

three relay outputs

two change-over contacts, twin contact,

#### Function programming via front panel **DIP** switches

The functions are programmed via front panel DIP switches on the card separately for each channel.



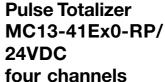
| NO  | normally open mode           |
|-----|------------------------------|
| NC  | normally closed mode         |
| LM  | wire-break and short-circuit |
|     | monitoring enabled           |
| OFF | wire-break and short-circuit |
|     | monitoring disabled          |

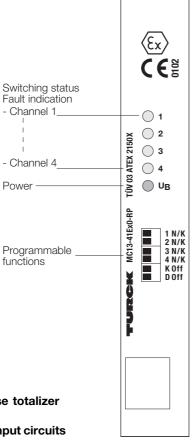
|                                                   | Ag alloy + 3 μm Au       |
|---------------------------------------------------|--------------------------|
| Switching voltage                                 | ≤ 250 VAC/120 VDC/30 VDC |
| Switching current                                 | ≤ 2 A/0.5 A/6 A          |
| Switching power                                   | ≤ 500 VA/100 W           |
| Switching frequency                               | ≤ 10 Hz                  |
| I.S. approval acc. to certificate of conformity   | TÜV 03 ATEX 2378         |
| Maximum nominal values                            |                          |
| <ul> <li>No load voltage U<sub>0</sub></li> </ul> | 9.6 V                    |
| - Short-circuit current I <sub>0</sub>            | 11 mA                    |
| - Power P <sub>0</sub>                            | 26 mW                    |
| E                                                 |                          |

| i.o. approvar acc. to certificate of comorning                   | 10V 03 A1LX 2370 |
|------------------------------------------------------------------|------------------|
| Maximum nominal values                                           |                  |
| <ul> <li>No load voltage U<sub>0</sub></li> </ul>                | 9.6 V            |
| - Short-circuit current I <sub>0</sub>                           | 11 mA            |
| <ul><li>Power P<sub>0</sub></li></ul>                            | 26 mW            |
| External Inductances/Capacitances L <sub>0</sub> /C <sub>0</sub> |                  |
| - [EEx ia] IIC                                                   | 0.9 mH/1.1 μF    |
| - [EEx ia] IIB                                                   | 4.9 mH/4.1 μF    |
| Marking of device                                                |                  |
|                                                                  |                  |

| _ | Power                                            | green          |
|---|--------------------------------------------------|----------------|
| - | Switching status/Fault indication (2-colour-LED) | 3 x yellow/rec |

|                             | Eurocard                    | 100 x 160 mm (DIN 41494)                                          |
|-----------------------------|-----------------------------|-------------------------------------------------------------------|
| 1                           | Base material               | Epoxy-resin, glass-fibre reinforced, quality class FR4            |
|                             | Front plate                 | plastic, 4TE = 20,32 mm<br>for individual interlocking            |
| 28,5                        | Connection                  | connectors according DIN 41612,<br>style F, 32 poles (series z+d) |
|                             | Operating temperature range | -25+70 °C                                                         |
| 175,5<br>4 TE<br>= 20.32 mm | Coding (no. 23)             |                                                                   |


**Output circuits** 


Kontaktbestückung

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32



## **Pulse Totalizer 24VDC**







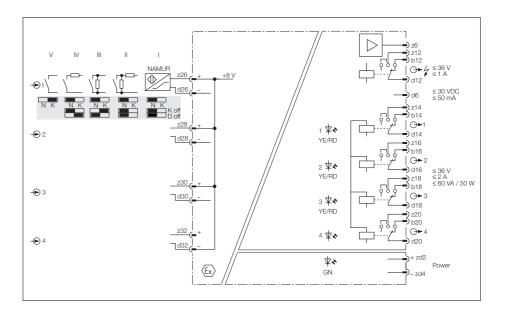
Intrinsically safe input circuits EEx ia/ib

- Area of application according to ATEX: II (1) GD
- Common totaliser function with four inputs
- Pulse output via four output relays and one pnp transistor output
- Programming via a set of **DIP-switches in the front**
- · Input circuit monitoring (can be disabled separately for each channel)
- Two-colour LED per channel for status/alarm indications
- Galvanic isolation between input circuit, output circuit and supply voltage
- · Common alarm indication via relay and transitor output



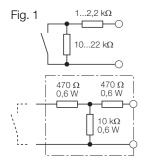
The MC13-41Ex0-RP is used for totalizing pulses from four intrinsically safe input circuits. Sensors

according to EN 60947-5-6 (NAMUR) (I) or mechanical contacts (II...V) may be connected.


Four parallel switching relay outputs and one pnp transistor output with thermally activated short-circuit protection are available as pulse outputs.

The input circuits are monitored for wirebreak and short-circuit conditions. If mechanical contacts are used, the wirebreak and short-circuit monitoring function must be disabled or the contact must be wired to a resistor circuitry (see Fig. 1).

The green LED on the front cover indicates that the device is powered. The four dual colour LEDs indicate the switching status (yellow) as well as fault conditions (red). When the input circuit monitoring feature is activated, red illuminates to indicate a fault in the input circuit and the respective output relay is de-energised.


If a fault occurs in any input circuit, the common alarm output is de-actitvated (transistor not conducting, relay open) and the two-colour LED changes to red.

If a 32-pole connection is used, the output relays can be programmed in either N.O. or N.C. mode (programming with plug-in jumpers on the card).





#### Pulse Totalizer MC13-41Ex0-RP/24VDC



Ready-made resistor module WM1 Ident-no. 0912101

| Type Ident-no.                | MC13-41Ex0-RP/24VDC<br>9028202 |
|-------------------------------|--------------------------------|
| Supply Voltage U <sub>B</sub> | 20.427.6 VDC                   |

Ripple W<sub>PP</sub> ≤ 10 % Overvoltage release  $33 \text{ V} \pm 1.5 \text{ V}$ Reverse polarity protection ≤ 250 V Power/Current consumption  $< 130 \, \text{mA}$ 

between input circuit, output circuit Galvanic isolation and supply voltage for 250 V<sub>rms</sub>, test voltage 2.5 kV <sub>rms</sub>

#### **Programming via front DIP-switches**

The input functions are programmed via six DIP-switches.



Selection of the input mode (NAMUR sensors or contacts) is accomplished on the individual channels by activating the first four DIP-switches. Position K disables input circuit monitoring, position N enables input circuit monitoring.

The last two DIP-switches on the bottom are for common enabling or disabling of short-circuit and/or wire-break monitoring for all channels with the input circuit monitoring function activated (switch position N):

- DIP-switch position K "OFF" short-circuit monitoring "OFF"
- DIP-switch position D "OFF" wire-break monitoring "OFF".

| Input circuits            | to EN 60947-5-6 (NAMUR),                |
|---------------------------|-----------------------------------------|
|                           | intrinsically safe according to EN50020 |
| Operating values          |                                         |
| <ul><li>Voltage</li></ul> | 8.2 V                                   |
| - Current                 | 8.2 mA                                  |
| Switching threshold       | 1.55 mA                                 |
| Hysteresis                | 0.2 mA                                  |
| Wire-break threshold      | ≤ 0.1 mA                                |
| Short-circuit threshold   | ≥ 6 mA                                  |
|                           |                                         |

#### **Output Circuits**

Relay outputs four relay outputs (change-over contacts) - Switching voltage ≤ 36 V ≤ 2 A - Switching current ≤ 60 VA/50 W - Switching capacity

 Switching frequency ≤ 10 Hz silver-alloy + 3 µm Au Contact material Transistor output pnp, short-circuit protected

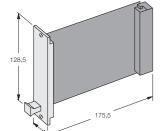
- Switching voltage ≤ 30 VDC Switchig current ≤ 50 mA Switching frequency ≤ 10 Hz Common alarm output

- Relay output relay 36 V/1 A (1 change-over contact) pnp, short-circuit protected Transistor output

TÜV 03 ATEX 2150 X

#### I.S. approval acc. to certificate of conformity

Maximum nominal values 9,6 V No load voltage U<sub>0</sub> 40.7 mA Short-circuit current I<sub>0</sub> 100 mW Power P<sub>0</sub>


External Inductances/Capacitances L<sub>0</sub>/C<sub>0</sub>

- [EEx ia] IIC  $23 \text{ mH}/3.6 \mu\text{F}$ [EEx ia] IIB 115 mH/26 μF Marking of device 

#### LED indications

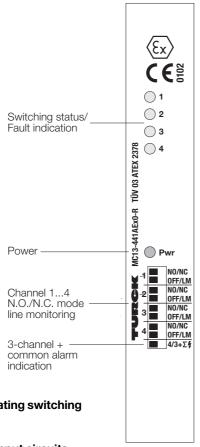
Coding (no. 20)

Power areen Switching status/Fault indication 4 x yellow/red (2-colour-LED)



**Eurocard** 100 x 160 mm (DIN 41494) Base material Epoxy-resin, glass-fibre reinforced, quality class FR4

Front plate plastic, 4TE = 20,32 mm for individual interlocking


Connection connectors according DIN 41612,

style F, 32 poles (series z+d) or 48-pole Operating temperature -25...+60 °C

> b 0 0 • 0 0 0 • 0 0 0

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32



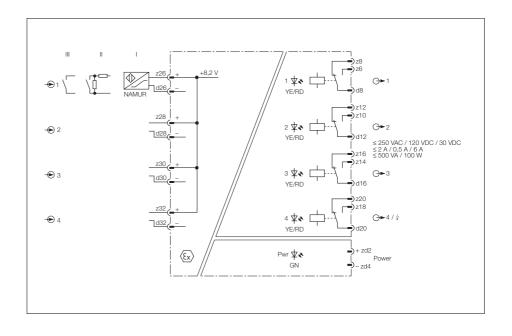


Isolating Switching Amplifier MC13-441AEx0-R/ 24VDC four channels



- Four-channel isolating switching amplifier
- Intrinsically safe input circuits EEx ia
- Area of application according to ATEX: II (1) GD
- Galvanic isolation between input, output and supply circuit
- Input circuit monitoring for wirebreak and short-circuit conditions (can be disabled)
- Four relay outputs with one change-over contact each
- Switching capacity 250 VAC/2 A
- Sealed relays with hard gold contacts
- Optionally as a 3-channel version with common alarm output
- · Surge suppressor circuit
- Outputs with programmable N.O. or N.C. mode per channel

The isolating switching amplifiers MC13-441AEx0-R/... feature four channels and intrinsically-safe input


circuits. Sensors according to EN 60947-5-6 (NAMUR) (I) or mechanical contacts (II + III) may be connected.

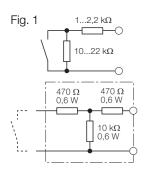
Each channel is equipped with a relay with a change-over contact. Thus 250V/2A can be switched directly.

The device can also be used as a 3-channel isolating amplifier with separate alarm output.

The input circuits can be monitored for wire-break and short-circuit conditions. The input circuit monitoring function as well as the output mode can be adjusted via the front panel DIP switches.

The green LED on the front cover indicates that the device is powered. The four dual colour LEDs indicate the switching status (yellow) as well as fault conditions (red). When the input circuit monitoring feature is activated, red illuminates to indicate a fault in the input circuit and the respective output relay is de-energised.






#### Isolating Switching Amplifier MC13-441AEx0-R/24VDC

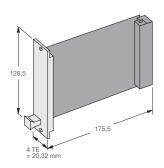
### Performance with activated alarm output

In case of an error in one of the input circuits, the common alarm output is switched off (relay de-energised); if the device is powered and the inputs are errorfree, the alarm circuit is switched (relay energised).

If mechanical contacts are used, the wirebreak and short-circuit monitoring function must be disabled or the contact must be wired to a resistor circuitry (see Fig. 1).



Ready-made resistor module WM1 Ident-no. 0912101


### Function programming via front panel DIP switches

The functions are programmed via front panel DIP switches on the card separately for each channel.



NO normally open mode
NC normally closed mode
LM wire-break and short-circuit
monitoring enabled
OFF wire-break and short-circuit
monitoring disabled

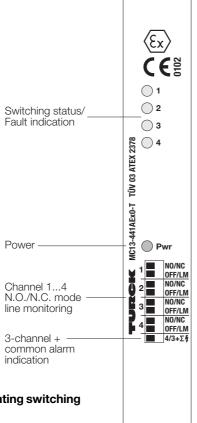
4/3+Σ/ 4 channel operation/3 channel operation with common alarm output

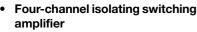


| Туре                                            | MC13-441AEx0-R/24VDC                         |
|-------------------------------------------------|----------------------------------------------|
| Ident-no.                                       | 9025601                                      |
| Supply voltage $U_{B}$                          | 20.427.6 VDC                                 |
| Ripple W <sub>pp</sub>                          | ≤ 10 %                                       |
| Overvoltage threshold                           | 33 V ± 1.5 V                                 |
| Protection against faulty connection            | ≤ 250 V                                      |
| Current consumption                             | ≤ 150 mA                                     |
| Galvanic isolation                              | between input circuit and output circuit and |
|                                                 | supply voltage for 250 V <sub>rms</sub>      |
|                                                 | test voltage 2.5 kV <sub>rms</sub>           |
| Input circuits                                  | according to EN 60947-5-6 (NAMUR),           |
| •                                               | intrinsically safe according to EN 50020     |
| Operating characteristics                       | ,                                            |
| - Voltage                                       | 8.2 V                                        |
| - Current                                       | 8.2 mA                                       |
| Switching threshold                             | 1.55 mA                                      |
| Hysteresis                                      | 0.2 mA                                       |
| Wire-break threshold                            | ≤ 0.1 mA                                     |
| Short-circuit threshold                         | ≥ 6 mA                                       |
| Output circuits                                 | four relay outputs                           |
| Contact configuration                           | 1 change-over contact, Ag alloy + 3 µm Au    |
| Switching voltage                               | ≤ 250 VAC/120 VDC/30 VDC                     |
| Switching current                               | ≤ 2 A/0.5 A/6 A                              |
| Switching capacity                              | ≤ 500 VA/100 W                               |
| Switching frequency                             | ≤ 10 Hz                                      |
| I.S. approval acc. to certificate of conformity | TÜV 03 ATEX 2378                             |
| Maximum nominal values                          |                                              |

| I.S. approval acc. to certificate of conformity                  | TÜV 03 ATEX 2378  |
|------------------------------------------------------------------|-------------------|
| Maximum nominal values                                           |                   |
| <ul> <li>No load voltage U<sub>0</sub></li> </ul>                | 9.6 V             |
| <ul> <li>Short-circuit current I<sub>0</sub></li> </ul>          | 11 mA             |
| <ul><li>Power P<sub>0</sub></li></ul>                            | 26 mW             |
| Internal Inductances/Capacitances L <sub>i</sub> /C <sub>i</sub> | 0.1 mH/negligible |
| External Inductances/Capacitances L <sub>0</sub> /C <sub>0</sub> |                   |
| - [EEx ia] IIC                                                   | 0.9 mH/1.1 μF     |
| - [EEx ia] IIB                                                   | 4.9 mH/4.1 μF     |
| Marking of device                                                |                   |

| LE | LED indications                   |                |  |
|----|-----------------------------------|----------------|--|
| -  | Power                             | green          |  |
| -  | Switching status/Fault indication |                |  |
|    | (2-colour-LED)                    | 4 x yellow/red |  |


| Eurocard                    | 100 x 160 mm (DIN 41494)                                          |  |
|-----------------------------|-------------------------------------------------------------------|--|
| Base material               | Epoxy-resin, glass-fibre reinforced, quality class FR4            |  |
| Front plate                 | plastic, 4TE = 20,32 mm<br>for individual interlocking            |  |
| Connection                  | connectors according DIN 41612,<br>style F, 32 poles (series z+d) |  |
| Operating temperature range | -25+70 °C                                                         |  |
| Coding (no. 18)             | d<br>• 0 • 0 0 0 0 • 0 0 0 0 0 • 0<br>b<br>z                      |  |




**Isolating Switching Amplifier** MC13-441AEx0-T/

**24VDC** 

four channels

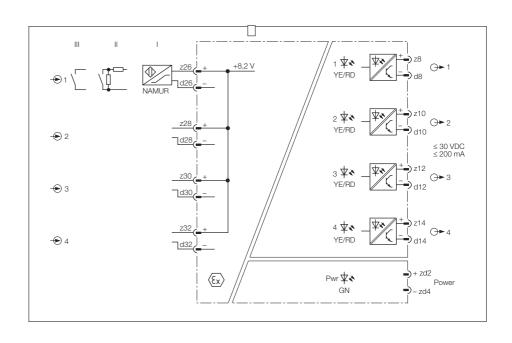




- · Intrinsically safe input circuits EEx ia
- · Area of application according to ATEX: II (1) GD
- Galvanic isolation between input, output and supply circuit
- Input circuit monitoring for wirebreak and short-circuit conditions (can be disabled)
- · Four transistor outputs, potential-free, short-circuit protected
- Optionally as a 3-channel version with common alarm output
- · Surge suppressor circuit
- **Outputs with progammable** N.O. or N.C. mode per channel



The isolating switching amplifiers MC13-441AEx0-T/... feature four channels and intrinsically-safe input


circuits. Sensors according to EN 60947-5-6 (NAMUR) (I) or mechanical contacts (II +III) may be connected.

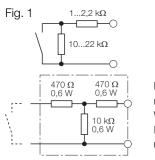
Each channel is equipped with a potential-free transistor output with thermal (non-cyclic) short-circuit protection.

The device can also be used as a 3-channel isolating amplifier with separate alarm output.

The input circuits can be monitored for wire-break and short-circuit conditions. The input circuit monitoring function as well as the output mode can be adjusted via the front panel DIP switches.

The green LED on the front cover indicates that the device is powered. The four dual colour LEDs indicate the switching status (yellow) as well as fault conditions (red). When the input circuit monitoring feature is activated, red illuminates to indicate a fault in the input circuit and the respective output transistor is disabled.

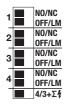





#### Isolating Switching Amplifier MC13-441AEx0-T/24VDC

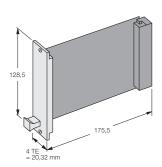
### Performance with activated alarm output

In case of an error in one of the input circuits, the common alarm output is switched off (transistor inhibited); if the device is powered and the inputs are error-free, the alarm circuit is switched (transistor conductive).


If mechanical contacts are used, the wirebreak and short-circuit monitoring function must be disabled or the contact must be wired to a resistor circuitry (see Fig. 1).



Ready-made resistor module WM1 Ident-no. 0912101


### Function programming via front panel DIP switches

The functions are programmed via front panel DIP switches on the card separately for each channel.



NO normally open mode
NC normally closed mode
LM wire-break and short-circuit
monitoring enabled

**OFF** wire-break and short-circuit monitoring disabled



| Туре                                            | MC13-441AEx0-T/24VDC                         |
|-------------------------------------------------|----------------------------------------------|
| ldent-no.                                       | 9025201                                      |
| Supply voltage $U_{B}$                          | 20.427.6 VDC                                 |
| Ripple W <sub>pp</sub>                          | ≤ 10 %                                       |
| Overvoltage threshold                           | 33 V ± 1.5 V                                 |
| Protection against faulty connection            | ≤ 250 V                                      |
| Current consumption                             | ≤ 100 mA                                     |
| Galvanic isolation                              | between input circuit and output circuit and |
|                                                 | supply voltage for 250 V <sub>rms</sub>      |
|                                                 | test voltage 2.5 kV <sub>rms</sub>           |
| Input circuits                                  | according to EN 60947-5-6 (NAMUR),           |
|                                                 | intrinsically safe according to EN 50020     |
| Operating characteristics                       | •                                            |
| - Voltage                                       | 8.2 V                                        |
| - Current                                       | 8.2 mA                                       |
| Switching threshold                             | 1.55 mA                                      |
| Hysteresis                                      | 0.2 mA                                       |
| Wire-break threshold                            | ≤ 0.1 mA                                     |
| Short-circuit threshold                         | ≥ 6 mA                                       |
| Output circuits                                 | four transistor outputs, potential-free,     |
|                                                 | short-circuit protected                      |
| Switching voltage                               | ≤ 30 VDC                                     |
| Switching current                               | ≤ 200 mA                                     |
| Voltage drop                                    | approx. 4 V/200 mA and approx. 2.7 V/50 mA   |
| Switching frequency                             | ≤ 1 kHz (3 kHz as a special version)         |
| I.S. approval acc. to certificate of conformity | TÜV 03 ATEX 2378                             |

| I.S. approval acc. to certificate of conformity   | 10V 03 ATEX 2378 |  |
|---------------------------------------------------|------------------|--|
| Maximum nominal values                            |                  |  |
| <ul> <li>No load voltage U<sub>0</sub></li> </ul> | 9.6 V            |  |

No load voltage U<sub>0</sub>
 Short-circuit current I<sub>0</sub>
 Power P<sub>0</sub>
 Internal Inductances/Capacitances L<sub>i</sub>/C<sub>i</sub>
 9.6 V
 11 mA
 26 mW
 0.1 mH/negligible

#### **LED** indications

(2-colour-LED)

Coding (no. 17)

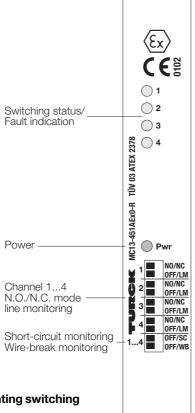
Power greenSwitching status/Fault indication

4 x yellow/red

Eurocard 100 x 160 mm (DIN 41494)
Base material Epoxy-resin, glass-fibre reinforced,

quality class FR4

Front plate plastic, 4TE = 20,32 mm for individual interlocking


Connection connectors according DIN 41612,

style F, 32 poles (series z+d)
Operating temperature range -25...+70 °C

peraling temperature range -25...+70 C

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32



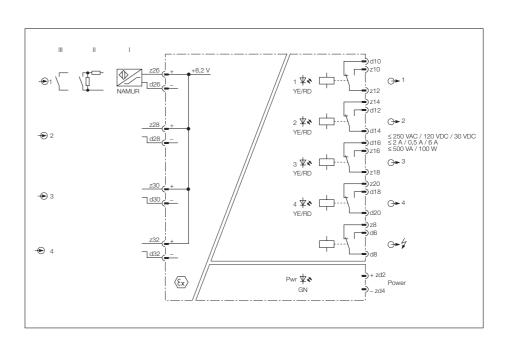


Isolating Switching Amplifier MC13-451AEx0-R/ 24VDC four channels



- Four-channel isolating switching amplifier
- Intrinsically safe input circuits EEx ia
- Area of application according to ATEX: II (1) GD
- Galvanic isolation between input, output and supply circuit
- Input circuit monitoring for wirebreak and short-circuit conditions (can be disabled separately for each channel)
- Five relay outputs with one change-over contact each
- Additional common alarm output
- Switching capacity 250 V/2 A
- Surge suppressor circuit
- Per channel one dual colour LED for signal/alarm indication
- Sealed relays with hard gold contacts

The isolating switching amplifiers MC13-451AEx0-R/... feature four channels and


intrinsically-safe input circuits. Sensors according to EN 60947-5-6 (NAMUR) (I) or mechanical contacts (II + III) may be connected.

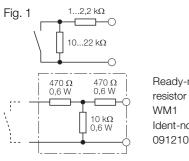
Each channel is equipped with a relay with a change-over contact.

Thus 250 V/2 A can be switched directly.

The input circuits can be monitored for wire-break and short-circuit conditions. The input circuit monitoring function as well as the output mode can be adjusted via the front panel DIP switches.

The green LED on the front cover indicates that the device is powered. The four dual colour LEDs indicate the switching status (yellow) as well as fault conditions (red). When the input circuit monitoring feature is activated, red illuminates to indicate a fault in the input circuit and the respective output relay is de-energised.

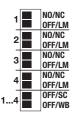




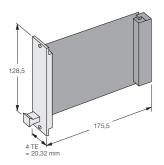

#### Isolating Switching Amplifier MC13-451AEx0-R/24VDC

#### Performance with activated alarm output

The card is equipped with a common alarm output via which errors in the four input circuits of the channels are signalled. In case of an error in one of the input circuits, the common alarm output is switched off (relay de-energised); if the device is powered and the inputs are errorfree, the alarm circuit is switched (relay energised).


If mechanical contacts are used, the wirebreak and short-circuit monitoring function must be disabled or the contact must be wired to a resistor circuitry (see Fig. 1).




| Ready-made      |
|-----------------|
| resistor module |
| WM1             |
| Ident-no.       |
| 0912101         |

#### Function programming via front panel **DIP** switches

The functions are programmed via front panel DIP switches on the card separately for each channel.



NO normally open mode NC normally closed mode LM wire-break and short-circuit monitoring enabled **OFF** wire-break and short-circuit monitoring disabled SC common short-circuit monitoring **WB** common wire-break monitoring



| Type<br>Ident-no.                    | MC13-451AEx0-R/24VDC<br>9028101                                                        |
|--------------------------------------|----------------------------------------------------------------------------------------|
| O contract the contract to           | 00.4.07.0.VD0                                                                          |
| Operating voltage U <sub>B</sub>     | 20.427.6 VDC                                                                           |
| Ripple W <sub>pp</sub>               | ≤ 10 %                                                                                 |
| Overvoltage threshold                | 33 V ± 1.5 V                                                                           |
| Protection against faulty connection | ≤ 250 V                                                                                |
| Current consumption                  | ≤ 100 mA                                                                               |
| Galavanic isolation                  | between input circuit and output circuit and supply voltage for 250 V <sub>rms</sub> , |
|                                      | test voltage 2.5 kV <sub>rms</sub>                                                     |
| Input circuits                       | to EN 60947-5-6 (NAMUR),                                                               |
|                                      | intrinsically safe according to EN50020                                                |
| Operating values                     |                                                                                        |
| - Voltage                            | 8.2 V                                                                                  |
| - Current                            | 8.2 mA                                                                                 |
| Switching threshold                  | 1.55 mA                                                                                |
| Hysteresis                           | 0.2 mA                                                                                 |
| Wire-break threshold                 | ≤ 0.1 mA                                                                               |
| Short-circuit threshold              | ≥ 6 mA                                                                                 |
| Output circuits                      | five relay outputs                                                                     |
| Contact configuration                | 1 change-over contact, Ag alloy + 3 μm Au                                              |
| Switching voltage                    | ≤ 250 VAC/120 VDC/30 VDC                                                               |
| Switching current                    | ≤ 2 A/0.5 A/6 A                                                                        |
| Switching capacity                   | ≤ 500 VA/100 W                                                                         |
| Switching frequency                  | ≤ 10 Hz                                                                                |
| 3 - 1 7                              |                                                                                        |

#### I.S. approval acc. to certificate of conformity TÜV 03 ATEX 2378

Max. values

 No-load voltage U<sub>0</sub> 9.6 V Short-circuit current I<sub>0</sub> 11 mA Output power P<sub>0</sub> 26 mW

External inductances/capacitances

[EEx ia/ib] IIC 0.9 mH/1.1 nF [EEx ia/ib] IIB 4.9 mH/4.1 nF Marking of the Device II (1) GD [EEx ia] IIC

#### **LED** indications

Coding (no. 19)

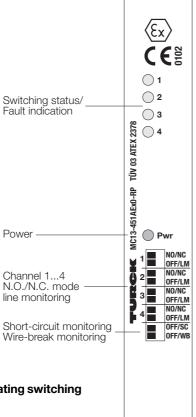
Power green

Switching status/Fault indication (2-colour-LED) 4 x yellow/red

**Eurocard** 100 x 160 mm (DIN 41494) Base material epoxy-resin, glass-fibre reinforced,

quality class FR4, Front plate plastic, 4TE = 20.32 mm for individual interlocking

connector according to DIN 4162 Connection style F, 32 poles (series z+d)


-25...+70 °C Operating temperature



2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32



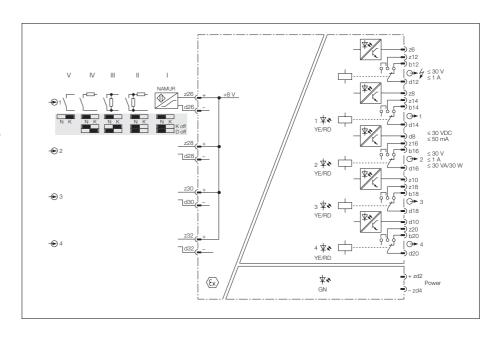




- Four-channel isolating switching amplifier
- Intrinsically safe input circuits EEx ia
- Area of application according to ATEX: II (1) GD
- Programming via a set of DIP-switches in the front
- Input circuit monitoring for wirebreak and short-circuit conditions
- Input circuit monitoring can be disabled separately for each channel
- One dual-colour LED per channel for signal/alarm indications
- Galvanic isolation between input and output circuits and supply circuit
- Output circuits with relays and pnp transistor outputs
- Common alarm indication via relay and transistor output



The isolating switching amplifiers MC13-451AEx0-RP/... feature four channels and

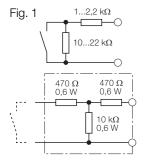

intrinsically-safe input circuits. Sensors according to EN 60947-5-6 (NAMUR) (I) or mechanical contacts (II...V) may be connected.

Each channel is equipped with a pnp transistor output with thermal (non-cyclic) short-circuit protection.

The input circuits can be monitored for wire-break and short-circuit conditions. The input circuit monitoring function as well as the output mode can be adjusted via the front panel DIP switches.

If mechanical contacts are used, the wirebreak and short-circuit monitoring function must be disabled or the contact must be wired to a resistor circuitry (see Fig. 1).

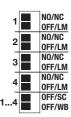
The green LED on the front cover indicates that the device is powered. The four dual colour LEDs indicate the switching status (yellow) as well as fault conditions (red). When the input circuit monitoring feature is activated, red illuminates to indicate a fault in the input circuit and the respective output transistor is disabled.






### Isolating Switching Amplifier MC13-451AEx0-RP/24VDC

# Performance with activated alarm output

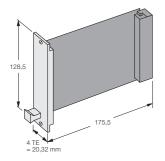

The card is equipped with a common alarm output via which errors in the four input circuits of the channels are signalled. In case of an error in one of the input circuits, the common alarm output is switched off (relay de-energised); if the device is powered and the inputs are errorfree, the alarm circuit is switched (relay energised).



Ready-made resistor module WM1 Ident-no. 0912101

# Function programming via front panel DIP switches

The functions are programmed via front panel DIP switches on the card separately for each channel.




NO normally open mode
NC normally closed mode
LM wire-break and short-circuit
monitoring enabled
OFF wire-break and short-circuit

monitoring disabled

sc common short-circuit monitoring

wb common wire-break monitoring



| Туре                        | MC13-451AEx0-RP/24VDC                         |
|-----------------------------|-----------------------------------------------|
| Ident-no.                   | 9028207                                       |
| Supply Voltage $U_B$        | 20.427.6 VDC                                  |
| Ripple W <sub>PP</sub>      | ≤ 10 %                                        |
| Overvoltage release         | $33 \text{ V} \pm 1.5 \text{ V}$              |
| Reverse polarity protection | ≤ 250 V                                       |
| Power/Current consumption   | ≤ 100 mA                                      |
| Galvanic isolation          | between input circuit, output circuit         |
|                             | and supply voltage for 250 V <sub>rms</sub> . |
|                             | test voltage 2.5 kV <sub>rms</sub>            |
| Input circuits              | to EN 60947-5-6 (NAMUR),                      |
| •                           | intrinsically safe according to EN50020       |
| Operating values            |                                               |

| input circuits            | to EN 60947-5-6 (NAMUR),                |
|---------------------------|-----------------------------------------|
|                           | intrinsically safe according to EN50020 |
| Operating values          |                                         |
| <ul><li>Voltage</li></ul> | 8.2 V                                   |
| - Current                 | 8.2 mA                                  |
| Switching threshold       | 1.55 mA                                 |
| Hysteresis                | 0.2 mA                                  |
| Wire-break threshold      | ≤ 0.1 mA                                |
| Short-circuit threshold   | ≥ 6 mA                                  |
|                           |                                         |

| Output     | Circuits |  |
|------------|----------|--|
| <b>-</b> . |          |  |

Relay outputs five relay outputs
1 change-over contact, Ag alloy + 3 μm Au

Switching voltage
 Switching current
 Switching capacity
 Switching capacity
 Switching capacity

- Switching frequency  $\leq$  10 Hz
Transistor output pnp, short-circuit protected

Switching output
 Switching current
 Switching frequency
 Switching frequency
 1 kHz
 Common alarm output
 Relay output
 see data above

Transistor output
 pnp, short-circuit protected

### I.S. approval acc. to certificate of conformity TÜV 03 ATEX 2378

### LED indications

Coding no. 20

PowerSwitching status/Fault indication

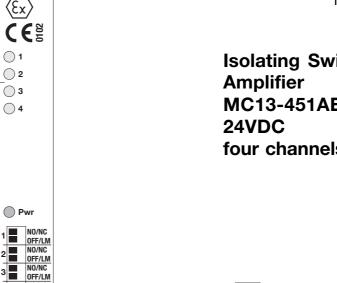
(2-colour-LED) 4 x yellow/red

**Eurocard** 100 x 160 mm (DIN 41494) Material glass-fiber reinforced epoxy resin,

Front panel plastic, 4TE = 20.32 mm, individually

quality class FR4

interlocking


Connection connector per DIN 41612,

type F, 32-pole (series z+d) or 48-pole

Operating temperature -25...+70 °C



**Isolating Switching Amplifier** MC13-451AEx0-T/ **24VDC** four channels





Switching status/

MC13-451AEx0-T TÜV 03 ATEX 2378

Fault indication

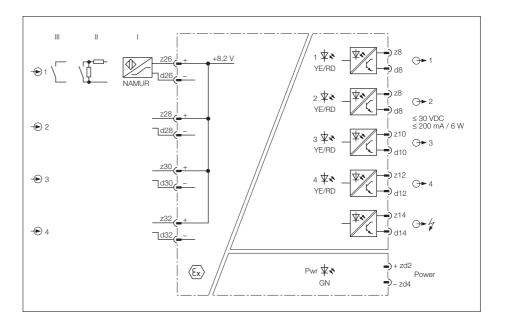
Power -

Channel 1...4

N.O./N.C. mode

line monitoring

- · Intrinsically safe input circuits EEx ia
- · Area of application according to ATEX: II (1) GD
- Galvanic isolation between input, output and supply circuit
- Input circuit monitoring for wirebreak and short-circuit conditions (can be disabled)
- Transistor outputs, potential-free, short-circuit protected
- · Additional common alarm output


The isolating switching amplifiers MC13-451AEx0-T/... feature four channels and intrinsically-safe input

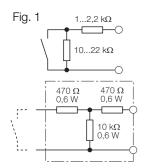
circuits. Sensors according to EN 60947-5-6 (NAMUR) (I) or mechanical contacts (II +III) may be connected.

Each channel is equipped with a potential-free short-circuit protected transistor output. The short-circuit protection is thermal (non-cyclic).

The input circuits can be monitored for wire-break and short-circuit conditions. The input circuit monitoring function as well as the output mode can be adjusted via the front panel DIP switches.

The green LED on the front cover indicates that the device is powered. The four dual colour LEDs indicate the switching status (yellow) as well as fault conditions (red). When the input circuit monitoring feature is activated, red illuminates to indicate a fault in the input circuit and the respective output transistor is disabled.






### Isolating Switching Amplifier MC13-451AEx0-T/24VDC

# Performance with activated alarm output

The card is equipped with a common alarm output via which errors in the four input circuits of the channels are signalled. In case of an error in one of the input circuits, the common alarm output is switched off (transistor inhibited); if the device is powered and the inputs are error-free, the alarm circuit is switched (transistor conductive).

If mechanical contacts are used, the wirebreak and short-circuit monitoring function must be disabled or the contact must be wired to a resistor circuitry (see Fig. 1).



Ready-made resistor module WM1 Ident-no. 0912101

# Function programming via front panel DIP switches

The functions are programmed via front panel DIP switches on the card separately for each channel.

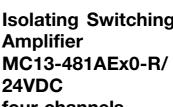


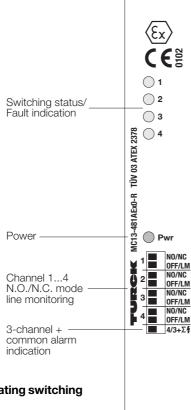
NO normally open mode
NC normally closed mode
LM wire-break and short-circuit
monitoring enabled
OFF wire-break and short-circuit

monitoring disabled

128,5 175,5

| Туре                                            | MC13-451AEx0-T/24VDC                                                                                                    |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| ldent-no.                                       | 9028002                                                                                                                 |
| Supply voltage $\cup_{\mathbb{B}}$              | 20.427.6 VDC                                                                                                            |
| Ripple W <sub>pp</sub>                          | ≤ 10 %                                                                                                                  |
| Overvoltage threshold                           | 33 V ± 1.5 V                                                                                                            |
| Protection against faulty connection            | ≤ 250 V                                                                                                                 |
| Current consumption                             | ≤ 100 mA                                                                                                                |
| Galvanic isolation                              | between input circuit and output circuit and supply voltage for 250 V <sub>rms</sub> test voltage 2.5 kV <sub>rms</sub> |
| Input circuits                                  | according to EN 60947-5-6 (NAMUR),                                                                                      |
|                                                 | intrinsically safe according to EN 50020                                                                                |
| Operating characteristics                       |                                                                                                                         |
| <ul><li>Voltage</li></ul>                       | 8.2 V                                                                                                                   |
| - Current                                       | 8.2 mA                                                                                                                  |
| Switching threshold                             | 1.55 mA                                                                                                                 |
| Hysteresis                                      | 0.2 mA                                                                                                                  |
| Wire-break threshold                            | ≤ 0.1 mA                                                                                                                |
| Short-circuit threshold                         | ≥ 6 mA                                                                                                                  |
| Output circuits                                 | five transistor outputs, potential-free,                                                                                |
|                                                 | short-circuit protected                                                                                                 |
| Switching voltage                               | ≤ 30 VDC                                                                                                                |
| Switching current                               | ≤ 200 mA                                                                                                                |
| Switching capacity                              | ≤ 6 W                                                                                                                   |
| Voltage drop                                    | appr. 4 V/200 mA and appr. 2.7 V/50 mA                                                                                  |
| Switching frequency                             | ≤ 1 kHz (3 kHz as a special version)                                                                                    |
| I.S. approval acc. to certificate of conformity | TÜV 03 ATEX 2378                                                                                                        |


| I.S. approval acc. to certificate of conformity                  | TÜV 03 ATEX 2378              |
|------------------------------------------------------------------|-------------------------------|
| Maximum nominal values                                           |                               |
| <ul> <li>No load voltage U<sub>0</sub></li> </ul>                | 9.6 V                         |
| <ul> <li>Short-circuit current I<sub>0</sub></li> </ul>          | 11 mA                         |
| <ul><li>Power P<sub>0</sub></li></ul>                            | 26 mW                         |
| Internal Inductances/Capacitances L <sub>i</sub> /C <sub>i</sub> | 0.1 mH/negligible             |
| External Inductances/Capacitances L <sub>0</sub> /C <sub>0</sub> |                               |
| - [EEx ia] IIC                                                   | 0.9 mH/1.1 μF                 |
| - [EEx ia] IIB                                                   | 4.9 mH/4.1 μF                 |
| Marking of device                                                | ⟨Ex⟩    (1) GD   [EEx ial   C |


| Marking of device                                     | ⓑ II (1) GD [EEx ia] IIC                               |  |
|-------------------------------------------------------|--------------------------------------------------------|--|
| LED indications                                       |                                                        |  |
| - Power                                               | green                                                  |  |
| <ul> <li>Switching status/Fault indication</li> </ul> |                                                        |  |
| (2-colour-LED)                                        | 4 x yellow/red                                         |  |
| Eurocard                                              | 100 x 160 mm (DIN 41494)                               |  |
| Base material                                         | Epoxy-resin, glass-fibre reinforced,                   |  |
|                                                       | quality class FR4                                      |  |
| Front plate                                           | plastic, 4TE = 20,32 mm                                |  |
|                                                       | for individual interlocking                            |  |
| Connection                                            | connectors according DIN 41612,                        |  |
|                                                       | style F, 32 poles (series z+d)                         |  |
| Operating temperature range                           | -25+70 °C                                              |  |
| Coding (no. 17)                                       | d 000000000000000000000000000000000000                 |  |
| coming (vor. v.)                                      | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |  |
|                                                       |                                                        |  |
|                                                       | 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32            |  |



Automation

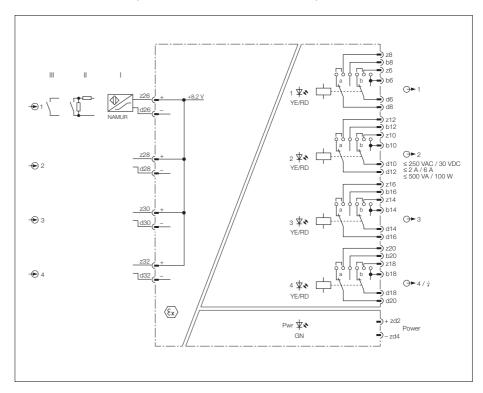
### **Isolating Switching Amplifier** MC13-481AEx0-R/ **24VDC** four channels





- Four-channel isolating switching amplifier
- · Intrinsically safe input circuits, EEx ia
- · Area of application according to ATEX: II (1) GD
- Galvanic isolation between input, output and supply circuit
- Input circuit monitoring for wire-break and short-circuit (can be disabled)
- · Four relay outputs with two change-over contacts each
- Selectable configuration: three channels with common alarm output
- Surge suppressor circuit
- Use of 32 and 48-pole socket connectors possible
- · Sealed relays with hard gold contacts
- Outputs with progammable N.O. or N.C. mode per channel



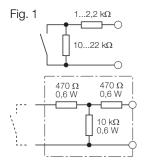

The isolating switching amplifier MC13-481AEx0-R/... features four channels

and intrinsically safe input circuits. Sensors according to EN 60947-5-6 (NAMUR) (I) or mechanical contacts (II + III) may be connected. Each channel is equipped with a relay output with two top grade, gold-plated doublet change-over contacts. Thus circuits with minimum currents of 50 µA and maximum currents of up to 2 A can be securely switched.

The green LED on the front cover indicates that the device is powered. The four dual colour LEDs indicate the switching status (yellow) as well as fault conditions (red). When the input circuit monitoring feature is activated, red illuminates to indicate a fault in the input circuit and the respective output relay is de-energised.

The card can also be operated as a threechannel isolating switching amplifier with a separate common alarm output.

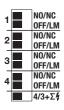
The input circuits can be monitored for wire-break and short-circuit conditions. The input circuit monitoring function as well as the output mode can be adjusted via the front panel DIP switches.






### Isolating Switching Amplifier MC13-481AEx0-R/24VDC

### Performance with activated alarm output

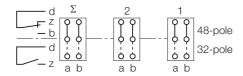

If an input circuit error occurs, the common alarm relay is de-energised; if the operating voltage applies and there are no input circuit errors, the alarm relay is energised. If mechanical contacts are used, the wirebreak and short-circuit monitoring function must be disabled or the contact must be wired to a resistor circuitry (see Fig. 1).



Ready-made resistor module WM1 Ident-no. 0912101

### Function programming via front panel **DIP** switches

The input functions are programmed via front panel DIP switches on the card separately for each channel.




NO normally open mode NC normally closed mode LM wire-break and short-circuit monitoring enabled OFF

wire-break and short-circuit monitoring disabled

**4/3+Σ** ∮ 4-channel operation/3-channel operation with common alarm output

The card can be connected via a 32 or 48-pole socket connector. With the 48-pole socket connector there are two change-over contacts per output, wheras with the 32-pole socket connector, the contact (normally open or normally closed mode) needed is determined via plug-in jumpers (directly at the relay on the card).



The output functions are programmed via jumper blocks on the card.

| Туре                                 | MC13-481AEx0-R/24VDC                         |
|--------------------------------------|----------------------------------------------|
| Ident-no.                            | 9026603                                      |
| Operating voltage $U_{B}$            | 20.427 VDC                                   |
| Ripple W <sub>pp</sub>               | ≤ 10 %                                       |
| Overvoltage threshold                | 33 V ± 1.5 V                                 |
| Protection against faulty connection | ≤ 250 V                                      |
| Current consumption                  | ≤ 130 mA                                     |
| Galvanic isolation                   | between input circuit and output circuit and |
|                                      | supply voltage for 250 V <sub>rms</sub> ,    |
|                                      | test voltage 2.5 kV <sub>rms</sub>           |
| Input circuits                       | to EN 60947-5-6 (NAMUR),                     |
|                                      | intrincically cafe according to EN 50000     |

intrinsically safe according to EN 50020 Operating values 8.2 V Voltage 8.2 mA Current Switching threshold 1.55 mA Hysteresis typ. 0.2 mA Wire-break threshold ≤ 0.1 mA Short-circuit threshold ≥ 6 mA

**Output circuits** 

Relay outputs four relay outputs Contact configuration 2 change-over contact, Ag alloy + 3 µm Au

(other contacts on request) ≤ 250 VAC/30VDC - Switching voltage

- Switching current  $\leq 2 \text{ A/6 A}$ ≤ 500 VA/100 W Switching capacity

Switching frequency ≤ 10 Hz Common alarm output

Relay output see data above

Transistor output pnp, short-circuit protected

### I.S. approval acc. to certificate of conformity TÜV 03 ATEX 2378

Max. values

9.6 V No-load voltage U<sub>0</sub> 11 mA Short-circuit current I<sub>0</sub> Output power P<sub>0</sub> 26 mW

External inductances/capacitances

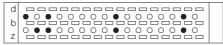
- [EEx ia] IIC 0.9 mH/1.1 µF - [EEx ia] IIB  $4.9 \text{ mH}/4.1 \mu\text{F}$ 

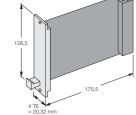
Marking of the device 

### **LED** indications

 Power green

Switching status/Fault indication (2-colour-LED) 4 x yellow/red


### Eurocard


100 x 160 mm (DIN 41494) Base material epoxy resin, glass-fibre reinf., quality class FR4, Front plate plastic, 4 TE = 20.32 mm,

for individual interlocking Connection connector according to DIN 4162

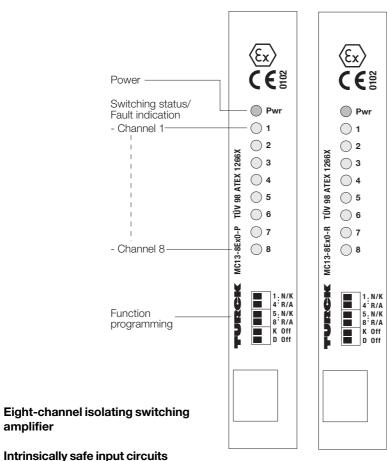
style F, 32 poles (series z+d) or 48 pole Operating temperature -25...+60 °C

Coding (no. 19)








**Isolating Switching Amplifier** MC13-8Ex0-R/24VDC MC13-8Ex0-P/24VDC eight channels

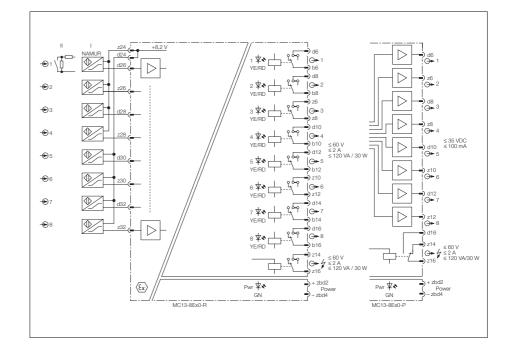


a pnp transistor output with thermally (non-cyclic) activated short-circuit protection.

The input circuits are monitored for shortcircuit and wire-break.

The green LED on the front cover indicates that the device is powered. The four dual colour LEDs indicate the switching status (yellow) as well as fault conditions (red). When the input circuit monitoring feature is activated, red illuminates to indicate a fault in the input circuit and the respective output relay is de-energised or the output transistor is disabled.



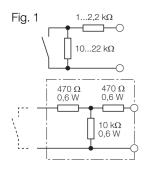

· Intrinsically safe input circuits EEx ia/ib

amplifier

- Area of application acc. to ATEX: II (1) GD
- · Programmable functions with front DIP-switches
- Input circuit monitoring for wire-break and short-circuit (can be disabled)
- One dual-colour LED per channel for status indications
- · Input circuits galvanically isolated from supply voltage and outputs
- Output circuits with
  - Relay outputs: MC13-8Ex0-R
  - pnp output transistors: MC13-8Ex0-P
- · Common alarm circuit via relay output

The MC13-8Ex0-R and the MC13-8Ex0-P are eight-channel switching amplifiers with intrinsically safe input circuits. They can be connected to sensors according to EN 60947-5-6 (NAMUR) (I) or potentialfree contacts (II).

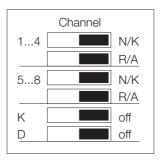
Depending on the device used, each channel provides a relay output (N.O. or N.C. mode is jumper programmable) or






### Isolating Switching Amplifier MC13-8Ex0-R.../24VDC/MC13-8Ex0-P.../24VDC

If a fault occurs in one of the input circuits, the common alarm relay is de-energised and the two-colour LED of the channel changes to red. The mode of the output relay is selected by programming jumpers on the card (N.O. or N.C.)


When using mechanical contacts as the input device, wire-break and short-circuit monitoring must be disabled or shunt resistors (II) must be connected to the contacts (see Fig. 1).



Ready-made resistor module WM1 Ident-no. 0912101

# Function programming with front panel DIP switches

Programming is accomplished with six DIP-switches located in the front of the device.



The four switches on the top are used to individually select the following functions of channels 1...4 and 5...8:

- DIP-switch position N/K (NAMUR or mechanical contacts):
   Switch position K disables input circuit monitoring, position N enables input circuit monitoring.
- DIP-switch position R/A (N.O. or N.C. mode):
   The mode indicated refers to a mechanical contact. Because the signal

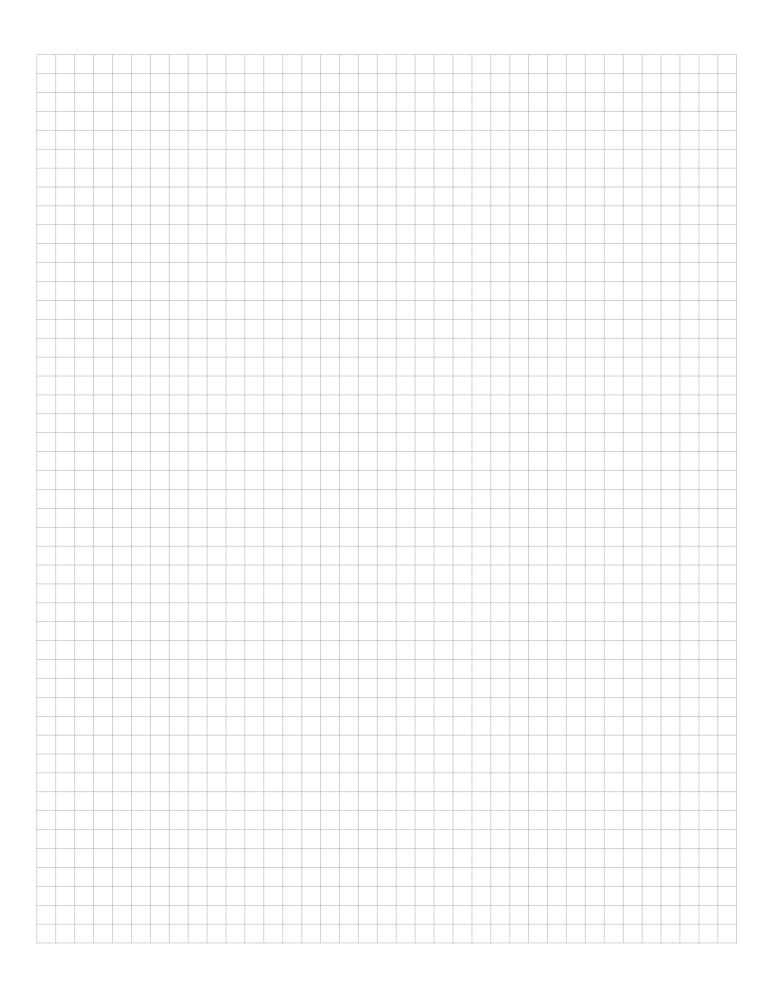
chanical contact. Because the signal mode of inductive sensors according to EN 60947-5-6 is inverse to that of of mechanical contacts, this switch can be used to reverse the performance mode of the input circuits.

The two DIP-switches on the bottom are used to enable or disable the wire-break or short-circuit monitoring function for all channels with activated input circuit monitoring (Switch position N).

- Switch K off: Short-ciruit monitoring de-activated
- Switch D off:
   Wire-break monitoring de-activated

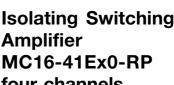





### Isolating Switching Amplifier MC13-8Ex0-R.../24VDC/MC13-8Ex0-P.../24VDC Industrial

ndustri<mark>al</mark> Au<mark>tomation</mark>

| Туре                                              | MC13-8Ex0-R/24VDC                                 | MC13-8Ex0-P/24VDC                           |
|---------------------------------------------------|---------------------------------------------------|---------------------------------------------|
| Ident-no.                                         | 9028700                                           | 9028720                                     |
| Supply Voltage $U_B$                              | 1835 VDC                                          | 1835 VDC                                    |
| Ripple W <sub>PP</sub>                            | ≤ 10 %                                            | ≤ 10 %                                      |
| Overvoltage release                               | 39 V ± 1 V                                        | 39 V ± 1 V                                  |
| Reverse polarity protection                       | ≤ 250 V                                           | ≤ 250 V                                     |
| Current consumption                               | ≤ 4 W                                             | ≤ 4 W                                       |
| Galvanic isolation                                | between input circuit, output circuit             | between input circuit, output circuit       |
| Galvario iodation                                 | and supply voltage for 250 V <sub>rms</sub>       | and supply voltage for 250 V <sub>rms</sub> |
|                                                   | test voltage 2.5 kV <sub>rms</sub>                | test voltage 2.5 kV <sub>rms</sub>          |
| Input Circuits                                    | EN 60947-5-6 (NAMUR), intrinsically safe          | En 60947-5-6 (NAMUR), intrinsically safe    |
| Operating characteristics                         |                                                   |                                             |
| <ul> <li>No-load voltage U<sub>0</sub></li> </ul> | 8.2 V                                             | 8.2 V                                       |
| - Short-circuit current I <sub>0</sub>            | 8.2 mA                                            | 8.2 mA                                      |
| Switching threshold                               | $1.2 \ge I_e \ge 2.1 \text{ mA}$                  | $1.2 \ge I_e \ge 2.1 \text{ mA}$            |
| Hysteresis                                        | 0.4 mÅ                                            | 0.4 mA                                      |
| Wire-break threshold                              | typ. 0.2 mA                                       | typ. 0.2 mA                                 |
| Short-circuit threshold                           | ≥ 6 mA                                            | ≥ 6 mA                                      |
| Output Circuits                                   |                                                   |                                             |
| Relay outputs                                     | relay (N.O./N.C. programmable)                    | _                                           |
| <ul><li>Switching voltage</li></ul>               | ≤ 36 V                                            | _                                           |
| - Switching current                               | ≤ 2 A                                             | _                                           |
| - Switching capacity                              | ≤ 72 VA/32 W                                      | _                                           |
| - Switching frequency                             | ≤ 10 Hz                                           | _                                           |
| <ul><li>Contact material</li></ul>                | silver-alloy + 3 µm Au                            | _                                           |
| Transistor outputs                                | -                                                 | pnp, short-circuit protected                |
| - Switching voltage                               | _                                                 | P <sub>wr</sub> - 3 V                       |
| - Switching current                               | _                                                 | ≤ 100 mA                                    |
| - Switching frequency                             | _                                                 | ≤ 100 Hz                                    |
| Common alarm output                               | relay 60 V/2 A (N.O./N.C. programmable)           | relay 60 V/2 A (1 SPDT contact)             |
| I.S. approval acc. to Certification of Conformity | TÜV 98 ATEX 1266X                                 | TÜV 98 ATEX 1266X                           |
| Maximum nominal values                            |                                                   |                                             |
| <ul> <li>No-load voltage U<sub>0</sub></li> </ul> | 9.6 V                                             | 9.6 V                                       |
| - Short-circuit current I <sub>0</sub>            | 57.2 mA                                           | 57.2 mA                                     |
| - Power P <sub>0</sub>                            | 137.3 mW                                          | 137.3 mW                                    |
| Maximum external inductances/capacitances         |                                                   |                                             |
| - [EEx ia] IIC                                    | 10 mH/3.6 μF                                      | 10 mH/3,6 μF                                |
| - [EEx ia] IIB                                    | 40 mH/26 μF                                       | 40 mH/26 μF                                 |
| Marking of device                                 |                                                   |                                             |
| LED Indications                                   |                                                   |                                             |
| - Power                                           | green                                             | green                                       |
| - Status indication/fault indication              | 8 x yellow/red (two-colour LEDs)                  | 8 x yellow/red (two-colour LEDs)            |
| Eurocard                                          | 100 x 160 mm (DIN 41494)                          | - do                                        |
| Material                                          | glass-fiber reinforced epoxy resin, quality class | FR4                                         |
| Front panel                                       | plastic, 4TE = 20.32 mm,                          | 8                                           |
|                                                   | individually interlocking                         |                                             |
| Connection                                        | connector per DIN 41612,                          | 128,5                                       |
|                                                   | type F, 48-pole                                   |                                             |
| Operating temperature                             | -25+60 °C                                         | 175,5                                       |
| Coding                                            | No. 116                                           | 4 1E · · · · · · · · · · · · · · · · · ·    |
| ····g                                             |                                                   |                                             |
|                                                   | d • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     |


2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32







four channels





Intrinsically safe input circuits EEx ia

Power

Switching status

 $\bigcirc$  1

O 2

○ 3

O 0 4

TÜV O1 ATEX 1775

MC16-41Ex0-RP

TOESOK.

Fault indication - Channel 1

- Channel 4

- Area of application acc. to ATEX: II (1) GD
- · Four input circuits, galvanically isolated from each other, from the output circuits and the supply voltage
- Input circuit monitoring for wire-break and short-circuit conditions
- · Output mode of each channel separately adjustable
- · Two relay contacts per channel, selectable normally open or normally closed mode, and one pnp transistor output
- One transistor alarm output per channel
- Pin and function compatible with the device type EG4-RLK from PEPPERL+FUCHS

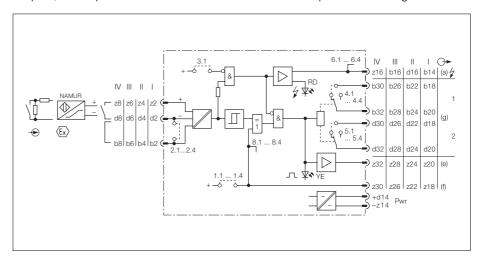
The isolating switching amplifier type MC16-41Ex0-RP has four channels with intrinsically safe input current circuits which are galvanically isolated from each other. Sensors according to EN 60947-5-6 (NAMUR) or mechanical contacts may be connected. Each input circuit is monitored for short-circuit and wire-break conditions (ex factory setting).

Short-circuit and wire-break monitoring can be disabled for all channels via a plugin jumper on the card (3.1). Further it is

possible to disable the wire-break monitoring function of each channel via a plug-in jumper

(2.1...2.4) or via a jumper on the multipoint connector. Each channel features a pnp short-circuit protected transistor output (e) and two relay contacts (g) which can be configured as normally closed or normally open (ex factory setting) outputs via plugin jumpers (4.1...5.4). In addition, each channel is equipped with a short-circuit protected pnp transistor alarm output (a): If an error is detected in the input circuit, the alarm output switches the operating voltage to the output. The alarm outputs of the individual channels can be configured as a single common alarm output (3.1) via a plug-in jumper (6.1...6.4). If an error occurs, the output relays are deenergised and the transistor output is

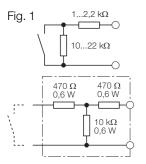
Regarding the load capacity of the relay outputs, it is required to observe the


inhibited.

respective load limit curves.

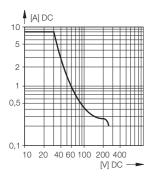
The maximum current or voltage value of the working point should be evaluated (see curve on page 2). The relay's switching performance can be adjusted via plug-in jumpers 4 and 5.

The output mode of each channel can be adjusted separately. This can be accomplished by plug-in jumpers (1.1...1.4) on the card or by applying operating voltage to the according inputs at the multipoint connector (f). If the output mode is selected via plug-in jumpers, configuration via the operating voltage is not admissible. With further plug-in jumpers (8.1...8.4) the output mode of several channels can be configured by applying operating voltage.


The Pwr LED illuminates green if the device is powered. Each channel features a switching status LED which illuminates vellow if the relay is energised or the transistor output is conducting.



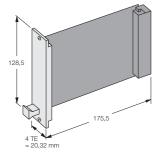



### Isolating Switching Amplifier MC16-41Ex0-RP

When using mechanical contacts as the input device, wire-break and short-circuit monitoring must be disabled or shunt resistors (II) must be connected to the contacts (see Fig. 1).



Ready-made resistor module WM1 ldent-no. 0912101


### Relay load limit curve



### Coding (no. 122)

| d  |                               |   |
|----|-------------------------------|---|
| lь | 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 |   |
| z  | 0000000000000000              |   |
| _  |                               | _ |

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32



| Type                             | MC16-41Ex0-RP |
|----------------------------------|---------------|
| Ident-no.                        | 9011102       |
| Operating voltage U <sub>R</sub> | 2028 VDC      |

Internal current consumption < 140 mA

Galvanic isolation between input circuits, output circuits and supply or 250 V<sub>rms</sub>, test voltage 2 kV<sub>rms</sub> according to EN 50020, between control circuits – 75 V (3.5 mm creepage distance) according to EN 50020, between relay circuits – min. 125 V according to EN 50178

according to EN 60947-5-6 (NAMUR), Input circuits intrinsically safe per EN 50020 Operating values 8.2 V Voltage Current 8.2 mA Switching threshold 1.55 mA Switching hysteresis 0.25 mA Wire-break threshold ≤ 0.2 mA Short-circuit threshold ≥ 6 mA Conversion of line of action - 1-signal 5...30 VDC 0-signal open or 0...0.7 V

Input current
 Value of the state of the sta

Switching capacity
 Contact material
 Switching frequency
 Transistor outputs
 360 VA / 100 W
 silver alloy + 5 µm Au
 25 Hz
 per channel 1 switching and alarm output, pnp,

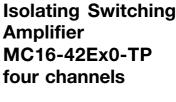
short-circuit protected
Switching current < 40 mA

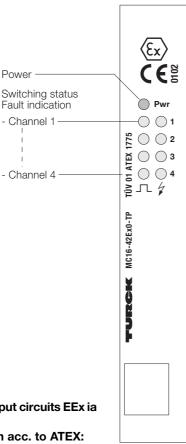
TÜV 01 ATEX 1775

Switching current
 Switching frequency
 Leakage current
 40 mA
 25 Hz
 10 µA

# I.S. Approval according to EC type examination certificate:

- [EEx ia] IIC 1 H/3.6 μF - [EEx ia] IIB 1 H/26 μF


### **LED** indications


Power
Switching status
Fault indication
green
4 x yellow
4 x red

Eurocard100 x 160 mm (DIN 41494)Base materialEpoxy resin, glass fibre reinf., quality class FR4Front plateplastic 4TE = 20,32 mm for individual interlock.Connectionconnectors to DIN 41612,<br/>type F, 48 poles (series z+d+b)

Operating temperature range -25...+60 °C

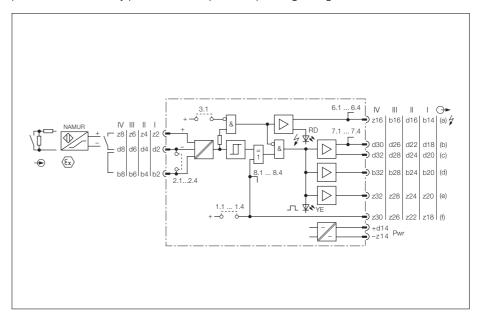






- Intrinsically safe input circuits EEx ia
- Area of application acc. to ATEX: II (1) GD
- · Four input circuits, galvanically isolated from each other, from the output circuits and the supply voltage
- Input circuit monitoring for wire-break and short-circuit conditions
- Output mode of each channel separately adjustable
- Three pnp transistor outputs per channel
- One transistor alarm output per channel
- Pin and function compatible with the device type EG4-TLK from **PEPPERL+FUCHS**

The isolating switching amplifier type MC16-42Ex0-TP has four channels with intrinsically safe input current circuits which are galvanically isolated from each other. Sensors according to EN 60947-5-6 (NAMUR) or mechanical contacts may be connected. Each input circuit is monitored for short-circuit and wire-break conditions (ex factory setting). Short-circuit and wirebreak monitoring can be disabled for all channels via a plug-in jumper on the card (3.1). Further it is possible to disable the wire-break monitoring function of each channel via a plug-in jumper (2.1...2.4) or via a jumper on the multipoint connector.

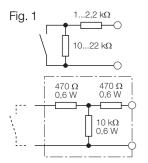



pnp transistor outputs. Two transistor outputs switch the operating voltage with a max. load of 40 mA to the outputs (d, e). The third transistor output is suited to switching currents of up to 200 mA (c). This third output of each channel must be powered externally (b). The 40 mA transistor outputs are powered via the supply voltage connection +Pwr (Pin: d14), whereas the 200 mA transistor outputs are supplied externally. Loads and the external supply of the 200 mA outputs have connection -Pwr (Pin: z14) as a common reference point. Via plug-in jumpers (7.1...7.4) the same voltage can be applied to all outputs via one input. When the jumpers are left open, it is possible to individually power each output

(ex factory setting) or groups of outputs using different voltages.

In addition, each channel is equipped with a short-circuit protected pnp transistor alarm output (a). If an error is detected in the control circuit, the alarm output switches the operating voltage to the output. Via plug-in jumpers (6.1...6.4) the alarm outputs of the individual channels can be configured as a single common alarm output. If an error occurs, the according transistor outputs are inhibited. The output mode of each channel can be adjusted separately. This can be accomplished by plug-in jumpers (1.1...1.4) on the card or by applying the operating voltage to the according inputs at the multipoint connector. If the output mode is selected via plug-in jumpers, configuration via application of the operating voltage is not admissible.

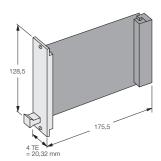







### Isolating Switching Amplifier MC16-42Ex0-TP

With further plug-in jumpers (8.1...8.4) the output mode of several channels can be configured by applying operating voltage. The Pwr LED illuminates green if the device is powered. Each channel features a switching status LED which illuminates yellow if the transistor output is conducting. The alarm LED illuminates red if there is an error.


When using mechanical contacts as the input device, wire-break and short-circuit monitoring must be disabled or shunt resistors (II) must be connected to the contacts (see Fig. 1).



Ready-made resistor module WM1 Ident-no. 0912101

### Coding (no. 122)

| d |                                             |  |
|---|---------------------------------------------|--|
| h | 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0               |  |
|   | 000000000000000                             |  |
| Z |                                             |  |
|   | 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 |  |



| Туре                                    | MC16-42Ex0-TP                                                                                                                         |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Ident-no.                               | 9011101                                                                                                                               |
| Operating voltage $U_B$                 | 2028 VDC                                                                                                                              |
| Internal current consumption            | < 80 mA                                                                                                                               |
| Galvanic isolation                      | between control circuits, output circuits and                                                                                         |
|                                         | supply for 250 $V_{rms}$ , test voltage 2 $kV_{rms}$ according to EN 50020 between control circuits – 75 V (3.5 mm creepage distance) |
|                                         | according to EN 50020                                                                                                                 |
| Input circuits                          | according to EN 60947-5-6 (NAMUR),                                                                                                    |
|                                         | intrinsically safe per EN 50020                                                                                                       |
| Operating values                        |                                                                                                                                       |
| <ul><li>Voltage</li></ul>               | 8 V                                                                                                                                   |
| - Current                               | 8 mA                                                                                                                                  |
| Switching threshold                     | 1.55 mA                                                                                                                               |
| Switching hysteresis                    | 0.25 mA                                                                                                                               |
| Wire-break threshold                    | ≤ 0.2 mA                                                                                                                              |
| Short-circuit threshold                 | ≥ 6 mA                                                                                                                                |
| Conversion of line of action            |                                                                                                                                       |
| - 1-signal                              | 530 VDC                                                                                                                               |
| - 0-signal                              | open or 00.7 V                                                                                                                        |
| - Input current                         | < 1 mA                                                                                                                                |
| Output circuits                         | 16 transistor outputs                                                                                                                 |
| Transistor outputs                      | per channel 2 low power transistor outputs and one alarm output, short-circuit protected, pnp                                         |
| <ul> <li>Switching current</li> </ul>   | 40 mA                                                                                                                                 |
| <ul> <li>Switching frequency</li> </ul> | < 1 kHz                                                                                                                               |
| <ul> <li>Leakage current</li> </ul>     | < 10 µA                                                                                                                               |
| <ul> <li>Voltage drop</li> </ul>        | < 3 V                                                                                                                                 |
| Transistor outputs                      | per channel 1 power transistor output, pnp, short-circuit protected                                                                   |
| <ul> <li>Switching current</li> </ul>   | < 200 mA                                                                                                                              |
| - Switching frequency                   | < 1 kHz                                                                                                                               |
| <ul> <li>Leakage current</li> </ul>     | < 10 μA                                                                                                                               |
| <ul><li>Voltage drop</li></ul>          | < 3 V                                                                                                                                 |
|                                         |                                                                                                                                       |

# Ex Approval according to EC type examination certificate:

| Max. Values                                                      |         |
|------------------------------------------------------------------|---------|
| <ul> <li>No-load voltage U<sub>0</sub></li> </ul>                | 9.6 V   |
| <ul> <li>Short-circuit current I<sub>0</sub></li> </ul>          | 10 mA   |
| - Power P <sub>0</sub>                                           | 25 mW   |
| Charcteristic curve                                              | linear  |
| External inductances/capacitances L <sub>0</sub> /C <sub>0</sub> |         |
| - [EEx ia] IIC                                                   | 1 H/3.6 |

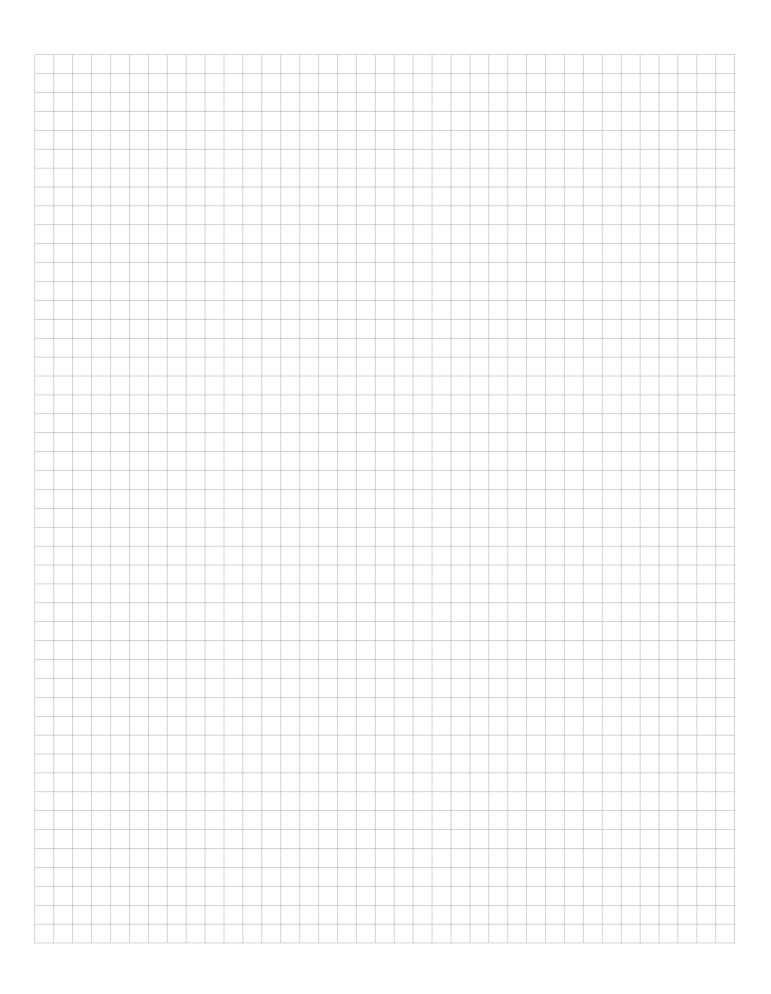
- [EEx ia] IIC 1 H/3.6 μF - [EEx ia] IIB 1 H/26 μF

### LED indications

| _ | Power            | green      |
|---|------------------|------------|
| _ | Switching status | 4 x yellow |
| _ | Fault indication | 4 x red    |

| Eurocard      | 100 x 160 mm (DIN 41494)                           |
|---------------|----------------------------------------------------|
| Base material | Epoxy resin, glass fibre reinf., quality class FR4 |
| Front plate   | plastic 4TE = 20,32 mm                             |
|               | for individual interlocking                        |
| Connection    | connectors to DIN 41612,                           |
|               | type F, 48 poles (series z+d+b)                    |

TÜV 01 ATEX 1775


Operating temperature range -25...+60 °C

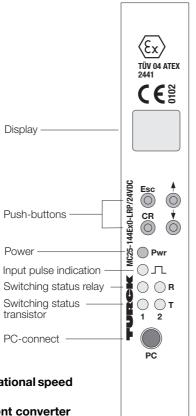


# ROTATIONAL SPEED METERS/ MONITORS










Industri<mark>al Automation</mark>

### Rotational Speed Monitor MC25-144Ex0-LRP/ 24VDC







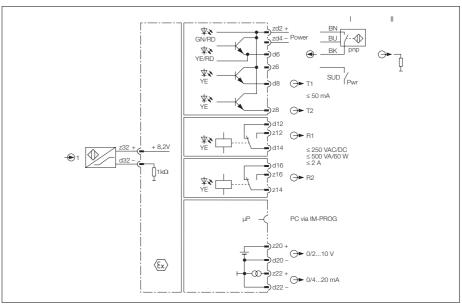
- One-channel rotational speed monitor/meter
- Frequency-current converter
- Intrinsically safe input circuit EEx ia
- Area of application acc. to ATEX:
   II (1) GD
- Overspeed and underspeed detection
- Detection range 1 mHz...10 kHz (0.06...600000 min<sup>-1</sup>)
- For use with NAMUR sensors, 3-wire sensors (I) or 24 VDC signals
- Easy parameter setting:
  - Lower measuring range value
  - Upper measuring range value
  - Limit values
- Every relay or transistor output can be parameterised individually:
  - Alarm output
  - 2 setpoints (on and off)
  - 4 setpoints (window function)
  - Pulse scaler (transistor T2 only)
- Pulse output (II)
- Current output and voltage output can be parameterised
- Parameter setting via PC, optional via four front push-buttons

The MC25-144Ex0-LRP is a rotational speed monitor designed to monitor and evaluate frequencies, rotational speeds and pulse sequences, e.g. from rotating shafts on motors, gears or turbines, and to monitor overspeeds and underspeeds referenced to set limits. A display located on the front cover indicates the actual speed –also beyond the set measuring range. Card parameterisation is menuassisted via four push-buttons

or via a personal computer (PC) and the IM-PROG programming adapter. The following alternatives can be

connected to the input:

- sensors per EN 60947-5-6 (NAMUR)
- 3-wire sensors
- external signal sources (24 VDC).


The input signal type is set during parameterisation. Further monitoring devices can be controlled via the short-circuit protected pulse output (d6). This connection can also be used as a pulse input for 3-wire pnp sensors or external signal sources, provided NAMUR sensors are not used. An invertible current output (0/4...20 mA) and a voltage output (0/2...10 V) are available.

Two relay outputs and two pnp short-circuit protected transistor outputs are available for limit value or alarm indications. Each digital output (relay or transistor) can be parameterised individually:

- overspeed and underspeed
- window function (combination of overspeed and underspeed)
- alarm output
- pulse scaler (transistor 2 only).

The switching hysteresis is defined by setting a switch-on and a switch-off point. The switching outputs are operated in the NO operating mode, the outputs are active in the normal state.

The respective alarm output de-energises when a limit value is reached. A switch-off delay can be set for each output so that brief frequency bursts do not trigger shutdown.





### Rotational Speed Monitor MC25-144Ex0-LRP

An interlock feature prevents the output relay from re-energising.

The lower and upper measuring range limit can be freely selected. The frequency is converted linearly to a current of 0/4...20 mA and a voltage of 0/2...10 V within the measuring range. An adjustable damping time can be set to filter measurement errors resulting from possible interference frequencies.

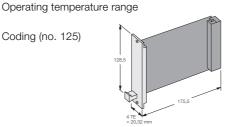
The input signal can be divided by a set factor and output via transistor output T2. For operation as pulse scaler, a divider is set for the input signal. This factor can be programmed as a whole number in the range from 2...9999.

Depending on the setting, the NAMUR input is monitored for wire-break and/or short-circuits. In case of input circuit errors, the relays de-energise, the transistors are disabled and the yellow pulse LED changes to red.

The analogue output performance in response to a wire-break and short-circuit on the input circuit can be set. In case of an error, either 0 mA/0 V or > 22 mA/11 V is output.

With monitoring for underspeed or a window function, a start up delay time can be set. During this the respective output remains energised or conductive, i.e. an underspeed will not trigger a system shutdown. The start-up delay is started by applying 24 VDC to z6 or applying the supply voltage.

The display of the actual frequency/ rotational speed, the setting of the limit values and the measuring range are implemented by default in Hz. The display and settings can be matched to suit the required unit by setting the time base and details of the pulses per revolution. For example, set the time base to a value of 60 for a display in min<sup>-1</sup> (rpm).


To ensure the fastest possible reaction time in all applications, lower frequencies are measured according to the digital pulse principle and higher frequencies are monitored on the basis of a time window. At lower frequencies, the reaction time depends exclusively on the time of period of the signal.

| Type                                                             | MC25-144Ex0-LRP/24VDC                                                         |
|------------------------------------------------------------------|-------------------------------------------------------------------------------|
| ldent-no.                                                        | 9054531                                                                       |
| Supply voltage $U_{B}$                                           | 1830 VDC                                                                      |
| Ripple W <sub>PP</sub>                                           | ≤ 10 %                                                                        |
| Current consumption                                              | < 200 mA                                                                      |
| Galvanic isolation                                               | between input circuit and output circuit                                      |
|                                                                  | and supply voltage for 250 V <sub>rms</sub> ,                                 |
|                                                                  | test voltage 2.5 kV <sub>rms</sub>                                            |
|                                                                  |                                                                               |
| Input circuit                                                    | alternative: NAMUR input/24 VDC input                                         |
| NAMUR input (terminal: zd32)                                     | intrinsically safe acc. to EN 60947-5-6 for                                   |
|                                                                  | NAMUR sensors                                                                 |
| 24 VDC input (terminal: d6)                                      | 3-wire sensors, mechanical contacts,                                          |
|                                                                  | 24 V signals                                                                  |
| Overflow protected to                                            | 15 kHz                                                                        |
| Output circuits                                                  |                                                                               |
| 2 x transistor outputs                                           | pnp, short-circuit protected ( $I_L \le 50$ mA)                               |
|                                                                  | voltage drop U <sub>CE</sub> < 2 V                                            |
| 2 x relay outputs                                                | one potential free changeover contact each                                    |
| <ul><li>Switching voltage</li></ul>                              | ≤ 250 VAC/DC                                                                  |
| Switching current                                                | ≤ 2 A                                                                         |
| <ul><li>Switching capacity</li></ul>                             | ≤ 500 VA/60 W                                                                 |
| Contact material                                                 | Ag alloy + 3 µm Au                                                            |
| Current output (invertible)                                      | 0/420 mA or 204/0 mA                                                          |
| Voltage output (invertible)                                      | 0/210 V or 102/0 V                                                            |
| Pulse output                                                     | transistor output: pnp,                                                       |
| r dioc output                                                    | short-circuit protected ( $I_L \le 50$ mA)                                    |
| I.S. approval acc. to certificate of conformity                  | TÜV 04 ATEX 2441                                                              |
| Maximum ratings                                                  | 10V 04 ATEX 244 I                                                             |
| S .                                                              | < 0.6 \/                                                                      |
| No-load voltage U <sub>0</sub> Short circuit ourroat I           | ≤ 9.6 V                                                                       |
| - Short-circuit current I <sub>0</sub>                           | ≤ 10.7 mA                                                                     |
| - Power P <sub>0</sub>                                           | ≤ 25.7 mW                                                                     |
| External Inductances/Capacitances L <sub>0</sub> /C <sub>0</sub> |                                                                               |
| - [EEx ia] IIC                                                   | 1 mH/1.1 µF                                                                   |
| - [EEx ia] IIB                                                   | 5 mH/4.4 μF                                                                   |
| Marking of device                                                |                                                                               |
| Operating range                                                  | 1 mHz10 kHz (0.06600000 min <sup>-1</sup> )                                   |
| LED indications                                                  |                                                                               |
| Power                                                            | green                                                                         |
| Pulse indication (2-colour LED)                                  | yellow – error: red                                                           |
| Switching status                                                 | 4 x yellow                                                                    |
| SWILCHII IU Status                                               |                                                                               |
| Display                                                          | transflective                                                                 |
| Display                                                          |                                                                               |
| S .                                                              | transflective  100 x 160 mm (DIN 41494)  Epoxy-resin, glass-fibre reinforced, |

Front plate

Connection

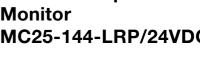
Coding (no. 125)



plastic, 4TE = 20.32 mm for individual interlocking

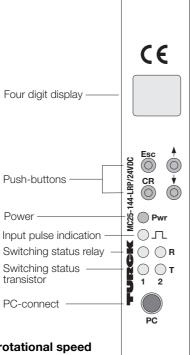
connectors according DIN 41612,

style F. 32 poles (series z+d)


-25...+60 °C

|     | d |                |  |
|-----|---|----------------|--|
|     | h |                |  |
|     | 7 | 00000000000000 |  |
| - 1 |   |                |  |




Industrial **Automation** 

### **Rotational Speed Monitor** MC25-144-LRP/24VDC









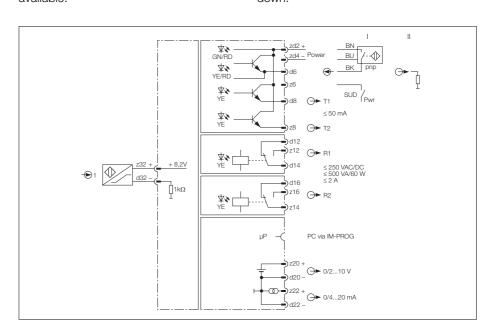
- Single-channel rotational speed monitor/meter
- Frequency-current convertor
- Overspeed and underspeed detection
- Detection range 1 mHz...10 kHz (0.06...600000 min-1)
- For use with NAMUR sensors, 3-wire sensors (I) or 24 VDC signals
- Easy parameter setting:
  - Lower measuring range value
  - Upper measuring range value
  - **Limit values**
- Every relay or transistor output can be parameterised individually:
  - Alarm output
  - 2 setpoints (on and off)
  - 4 setpoints (window function)
  - Pulse scaler (transistor T2 only)
- Pulse output (II)
- Current output 0/4...20 mA or 20...4/0 mA and voltage output 0/2...10 V or 10...2/0 V can be parameterised
- Parameter setting via PC, optional via four front pushbuttons

The MC25-144-LRP is a rotational speed monitor designed to monitor and evaluate frequencies, rotational speeds and pulse sequences, e.g. from rotating shafts on motors, gears or turbines, and to monitor overspeeds and underspeeds referenced to set limits. A display located on the front cover indicates the actual speed - also beyond the set measuring range. Card parameterisation is menu-assisted via four front push-buttons or via personal

computer (PC) with the IM-PROG programming adapter. The following alternatives can be

connected to the input:

- sensors per EN 60947-5-6 (NAMUR)
- 3-wire sensors
- external signal sources (24 VDC).


The input signal type is set during parameterisation. Further monitoring devices can be controlled via the short-circuit protected pulse output (d6). This connection can also be used as a pulse input for 3-wire pnp sensors or external signal sources if NAMUR sensors are not used. An invertible current output (0/4...20 mA) and a voltage output (0/2...10 V) are available.

Two relay outputs and two pnp shortcircuit protected transistor outputs are available for limit value or alarm indications. Each digital output (relay or transistor) can be parameterised individually:

- overspeed and underspeed
- window function (combination of overspeed and underspeed)
- alarm output
- pulse scaler (transistor 2 only).

The switching hysteresis is defined by setting a switch-on and a switch-off point. The switching outputs are operated in the NO operating mode; the outputs are active in the normal state.

The respective alarm output de-energises when a limit value is reached. A switch-off delay can be set for each output so that brief frequency bursts do not trigger shutdown.





### Rotational Speed Monitor MC25-144-LRP

An interlock feature prevents the output relay from re-energising.

The lower and upper measuring range limit can be freely selected. The frequency is converted linearly to a current of 0/4...20 mA and a voltage of 0/2...10 V within the measuring range. An adjustable damping time can be set to filter measurement errors resulting from possible interference frequencies.

The input signal can be divided by a set factor and output via transistor output T2. For operation as pulse scaler, a factor is set for the input signal. This factor can be programmed as a whole number in the range from 2...9999.

Depending on the setting, the NAMUR input is monitored for wire-break and/or short-circuits. In case of input circuit errors, the relays de-energise, the transistors are disabled and the yellow pulse LED changes to red.

The analogue output performance in response to a wire-break and short-circuit on the input circuit can be set. In case of an error, either 0 mA/0 V or > 22 mA/11 V is output.

With monitoring for underspeed or a window function, a start-up delay time can be set. During this time, the respective output remains energised or conductive, i.e. an underspeed will not trigger system shutdown. The start-up delay is started by applying 24 VDC to z6 or applying the supply voltage.

The display of the actual frequency/ rotational speed, the setting of the limit values and the measuring range is implemented by default in Hz. The display and settings can be matched to suit the required unit by setting the time base and details of the pulses per revolution. For example, set the time base to a value of 60 for a display in min<sup>-1</sup> (rpm).

To ensure the fastest possible reaction time in all applications, lower frequencies are measured according to the digital pulse principle and higher frequencies are monitored on the basis of a time window. At lower frequencies, the reaction time depends exclusively on the time of period of the signal.

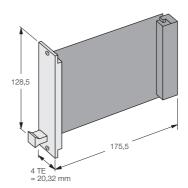
| Туре                                    | MC25-144-LRP/24VDC                                                          |
|-----------------------------------------|-----------------------------------------------------------------------------|
| Ident-no.                               | 9054532                                                                     |
| Supply voltage $U_{B}$                  | 1830 VDC                                                                    |
| Ripple W <sub>PP</sub>                  | ≤ 10 %                                                                      |
| Current consumption                     | < 200 mA                                                                    |
| Galvanic isolation                      | between input circuit and output circuit                                    |
|                                         | and supply voltage for 250 $V_{\rm rms}$ , test voltage 2.5 $kV_{\rm rms}$  |
| Input circuit                           | alternative: NAMUR input/24 VDC input                                       |
| NAMUR input (terminal: zd32)            | NAMUR sensors acc. to EN 60947-5-6                                          |
| 24 VDC input (terminal: d6)             | 3-wire sensors, mechanical contacts                                         |
| 1-1-(-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 24 V signals                                                                |
| Overflow protected to                   | 15 kHz                                                                      |
| Output circuits                         |                                                                             |
| 2 x transistor outputs                  | pnp, short-circuit protected ( $I_L \le 50$ mA) voltage drop $U_{CE} < 2$ V |
| 2 x relay outputs                       | one potential free change-over contact each                                 |
| <ul> <li>Switching voltage</li> </ul>   | ≤ 250 VAC/DC                                                                |
| <ul> <li>Switching current</li> </ul>   | ≤ 2 A                                                                       |
| <ul> <li>Switching capacity</li> </ul>  | ≤ 500 VA/60 W                                                               |
| - Contact material                      | Ag alloy + 3 µm Au                                                          |
| Current output (invertible)             | 0/420 mA or 204/0 mA                                                        |
| Voltage output (invertible)             | 0/210 V or 102/0 V                                                          |
| Pulse output                            | transistor output: pnp,                                                     |
|                                         | short-circuit protected (I <sub>1</sub> ≤ 50 mA)                            |

### Operating range

Power

**LED** indications

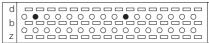
Pulse indication (2-colour LED) Switching status Display


Eurocard

Front plate

Base material

Connection

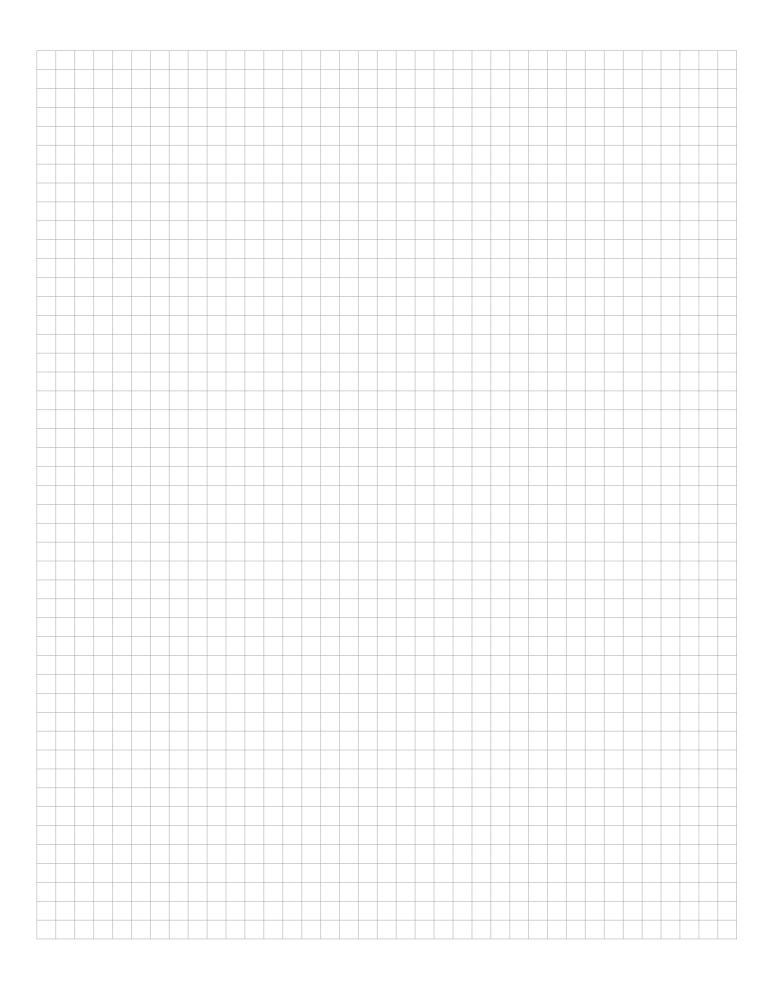

Operating temperature range Coding (no. 125)



yellow - error: red 4 x yellow transflective

100 x 160 mm (DIN 41494) Epoxy-resin, glass-fibre reinforced, quality class FR4 plastic, 4TE = 20.32 mm for individual interlocking connectors according DIN 41612, style F, 32 poles (series z+d) -25...+60 °C

1 mHz...10 kHz (0.06...600000 min<sup>-1</sup>)






# ANALOGUE DATA TRANSMITTERS/ MEASURING AMPLIFIERS


# Analogue Data Transmitters/ Measuring Amplifiers

| Measuring Amplifiers                 | Page |
|--------------------------------------|------|
| MC30-28-Li/24VDC                     | 3-3  |
| MC31-121Ex0-LRP/24VDC                | 3-5  |
| MC31-22AEx0-i/24VDC                  | 3-7  |
| MC32-12Ex0-LRP/24VDC                 | 3-9  |
| MC32-121Ex0-LRP/24VDC                | 3-11 |
| MC32-121Ex0-RP/24VDC                 | 3-13 |
| MC32-11Ex0-Ri/24VDC                  | 3-15 |
| MC33-1 <mark>21Ex0-LRP</mark> /24VDC | 3-17 |
| MC33-12Ex0-LRP/24VDC                 | 3-19 |
| MC33-12Ex0-Hi/24VDC                  | 3-21 |
| MC33-12AEx0-i/24VDC                  | 3-23 |
| MC33-22Ex0-Hi/24VDC                  | 3-25 |
| MC33-22 <mark>AEx0-i/24VDC</mark>    | 3-27 |
| MC33-EP2-Ex0                         | 3-29 |
| MC34-121Ex0-LRP/24VDC                | 3-31 |
| MC35-11Ex0-Hi/24VDC                  | 3-33 |
| MC35-22Ex0-i/24VDC                   | 3-35 |
| MC35-22Ex0-Hi/24VDC                  | 3-37 |

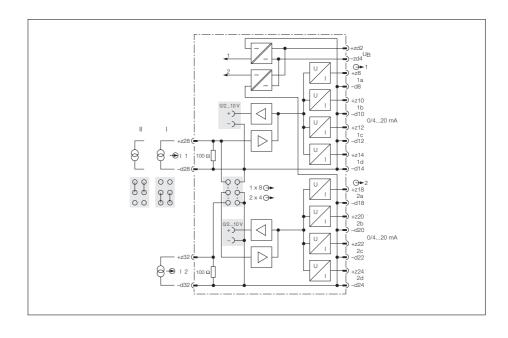




## Current Driver for Standard Current Signals MC30-28-Li/24VDC two channels



- Two-channel current driver
- Galvanic isolation between input circuit, output circuit and power supply
- Two inputs for standard current signals 0/4...20 mA
- Four 0/4...20 mA current outputs for each channel
- · Outputs isolated from each other
- 0/2...10 V front test socket for each channel


The MC30-28-Li/24VDC current driver isolates, distrubutes and amplifies standard current signals.

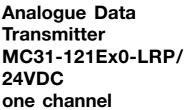
The card provides two isolated circuits, each with four 0/4...20 mA current outputs.

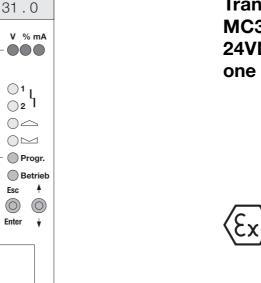
The input signal of one channel is isolated and passed in a 1:1 mode to the four outputs (I).

For additional distribution, both circuits can be coupled (II) which will override the isolation between the channels.

All output circuits have a common minus potential for each channel.







### **Current Driver for Standard Current Signals MC30-28-Li/24VDC**

| Туре                               | MC30-28-Li/24VDC                                          |
|------------------------------------|-----------------------------------------------------------|
| Ident-no.                          | 9040110                                                   |
| Supply Voltage $\cup_{\mathbb{B}}$ | 20.427.6 VDC                                              |
| Ripple W <sub>PP</sub>             | ≤ 10 %                                                    |
| Power/Current consumption          | ≤ 250 mA                                                  |
| Galvanic isolation                 | between both channels and supply voltage for 500 V        |
| Input Circuits                     | current inputs                                            |
| Input resistance                   | 100 Ω                                                     |
| Operating characteristics          | 0/420 mA                                                  |
| Maximum value                      | 60 mA                                                     |
| Output Circuits                    | 4 current outputs per channel with common minus potential |
| Current outputs                    | 0/420 mA                                                  |
| Load                               | ≤ 400 Ω                                                   |
| Test Sockets on Front Plate        | 1 per channel                                             |
| Output voltage                     | 0/210 V, short-circuit protected                          |
| Loadresistance                     | ≥5 kΩ                                                     |
| Transfer Characertistics           |                                                           |
| Zero error                         | $\leq$ 0.025 % of final value ( $\leq$ 5 $\mu$ A)         |
| Conversion error                   | $\leq$ 0.1 % of final value ( $\leq$ 20 $\mu$ A)          |
| Effect of load impedance           | ≤ 0.01 % of final value                                   |
| Effect of supply voltage impedance | negligible                                                |
| Ambient temperature sensitivity    | ≤ 0.005 % / K of final value                              |
| Pulse rise time (10 %90%)          | < 50 ms                                                   |
| Pulse release time (90 %10%)       | < 50 ms                                                   |
| LED Indications                    |                                                           |
| - Power                            | green                                                     |
| Eurocard                           | 100 x 160 mm (DIN 41494)                                  |
| Material                           | glass-fiber reinforced epoxy resin, quality class FR4     |
| Front panel                        | plastic, 4TE = 20.32 mm                                   |
|                                    | individually interlocking                                 |
| Connection                         | connector per DIN 41612,                                  |
|                                    | type F, 32-pole (series z+d)                              |
| Operating temperature              | -25+60 °C                                                 |
| •                                  |                                                           |



Industri<mark>al</mark> Au<mark>tomation</mark>



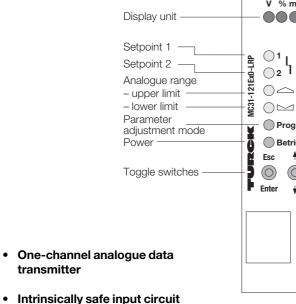


CE

The MC31-121Ex0-LRP analogue data transmitter is used to evaluate resistance changes from potentiometers located

in the hazardous (classified) area and to convert them into standard signals. This allows a more flexible use of potentiometers in the hazardous area without requiring approvals and enclosures.

Alternatively, the device can also transfer standard 0/4...20 mA current signals or 0/2...10 voltage signals from the hazardous areas into the safe area.


A display on the front shows the current and voltage output value or the respective input value as a percentage in reference to the preset range.

The potentiomenter value is always displayed as a percentage.

Programming of the potentiometer range (I) is accomplished via the menu for card parameter setting either by:

- receiving/accepting of potentiometer position
- direct preselection in % rate (independent of potentiometer position)

The output presets can accept voltage signal inputs (III) or current signal inputs (II) that are at least 10 % of the final value ( $\Delta U = 1$  V;  $\Delta I = 2$  mA) of the maximum output signals. This allows for instance amplification of 5...6 V or 4...6 mA onto the standardised output signals.



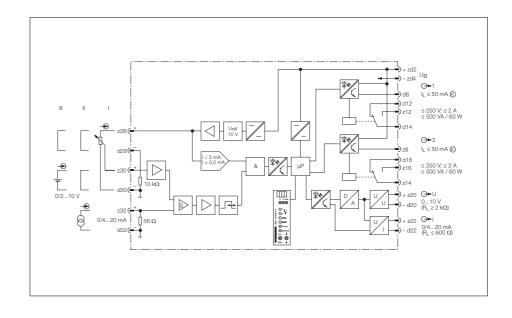
Four digit display

voltage for potentiometer supply

ATEX: II (1) GD

EEx ia

Selectable inputs:
- Potentiometers 2...20 kΩ


· Area of application according to

• Input circuit monitoring for wire-

Intrinsically safe 10 V reference

break and short-circuit

- 0/2...10 V voltage signals
- 0/4...20 mA current signals
- Simple analogue range and setpoint adjustment:
  - Upper limit
  - Lower limit
  - Two setpoints 1 and 2
- Hysteresis adjustable for both setpoint outputs (in %)
- Voltage output 0...10 V and current output 0/4...20 mA
- Galvanic isolation between input circuit, output circuit and power supply
- One transistor and one relay output for each setpoint (1 and 2)
- Internal interface for parameter programming via PC





### Analogue Data Transmitter MC31-121Ex0-LRP/24VDC

The current signal output 0/4...20 mA and the voltage signal output 0...10 V may be used at the same time. Two outputs, each with relay and pnp short-circuit protected transistor, provide setpoint indication.

The two setpoint outputs are independently adjustable. They are so designed that they can be used for either "overrange" or "underrange" monitoring.

The potentiometer circuit is monitored for wire-break and short-circuit condition (I < 0.5 mA; I > 5 mA). When faults in the input circuit occur, both setpoint outputs de-activate (relay contacts open, transistors not conducting). The display indicates "Err" (Error) and the green Power LED turns red.

In "live-zero mode" the input circuit is monitored for undervoltage/undercurrent (1 V/2 mA). Both relay outputs de-activate in case of faults.

The current output during a malfunction in the input circuit can be programmed to automatically either go to 0 mA or ≥ 22 mA, or to follow the direction of the input signal (0 mA for wire-break, ≥ 22 mA during a short-circuit condition).

Programming is accomplished with a set of toggle switches on the front of the device, or via personal computer (PC). The following parameters can be preselected:

- low value of range
- high value of range
- setpoint 1 and setpoint 2
- input: R/U/I
- input signal: live zero/dead zero
- current output: 0/4...20 mA
- setpoint outputs to indicate overrange or underrange
- hvsteresis of setpoint outputs 1...20 % in 1 % increments in reference to the output signal
- analogue output characteristics during fault condition: linear/0 mA/≥ 22 mA
- unit of display
- resistance values for maximum and minimum switching point

Coding (no. 105)

| d<br>b<br>z | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     |
|-------------|---------------------------------------------|
|             | 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 |

| Ident-no.                             | 9040250                                                 |
|---------------------------------------|---------------------------------------------------------|
| Supply Voltage U <sub>B</sub>         | 20.427.6 VDC                                            |
| Ripple W <sub>PP</sub>                | ≤ 10 %                                                  |
| Overvoltage release                   | 33 V ± 1.5 V                                            |
| Power/Current consumption             | ≤ 200 mA                                                |
| Galvanic isolation                    | between input circuit, output circuit and supply        |
|                                       | voltage for 250 $V_{rms}$ , test voltage 2.5 $kV_{rms}$ |
| Input Circuit                         | intrinsically safe per EN 50020                         |
| Potentiometer input                   | 10 VDC; intrinsically safe                              |
| Input resistance                      | 220 kΩ                                                  |
| Current input                         | 020 mA; $R_i = 56 \Omega$                               |
| Voltage input                         | 010 V; R <sub>i</sub> = ∞                               |
| Output Circuits                       |                                                         |
| Voltage output                        | 010 V ( $R_L$ ≥ 2 k $\Omega$ )                          |
| Current output                        | $0/420 \text{ mA (load} \leq 600 \Omega)$               |
| Setpoint control/alarm outputs        |                                                         |
| <ul> <li>Transistor output</li> </ul> | pnp, short-circuit protected ( $I_L \le 50$ mA)         |
| <ul> <li>Relay output</li> </ul>      | 1 potential-free change-over contact                    |
| Switching voltage                     | ≤ 250 V                                                 |
| Switching current                     | ≤ 2 A                                                   |
| Switching capacity                    | ≤ 500 VA/60 W                                           |
| Contact material                      | silver-alloy + 3 μm Au                                  |
| Interface                             | RS232 serial/V.24 via adapter MC-IM-232                 |

### I.S. approval acc. to Certificate of Conformity

 No-load voltage U<sub>0</sub> Short-circuit current I<sub>0</sub>

- Power P<sub>0</sub>

- [EEx ia] IIC - [EEx ia] IIB

Max. values

External Inductances/Capacitances L<sub>0</sub>/C<sub>0</sub>

Marking of device

TÜV 03 ATEX 2071 X

19 V 31 mA 145 mW

> 2 mH/187 nF (alternatively: 5 mH/177 nF) 2 mH/1.2 µF (alternatively: 5 mH/967 nF)

### **Transfer Characteristics**

Potentiometer range Minimum input signal for maximum output signal Linearity tolerance Effect of load impedance

Effect of supply voltage impedance Ambient temperature sensitivity

Pulse rise time (10 %...90 %) Pulse relase time (90 %...10 %) 2...20 k $\Omega$  (high and low values adjustable in %)

 $\Delta U = 1 V; \Delta I = 2 mA$ 

≤ 0.1 % of final value (typically 0.03 %)

≤ 0.01 % of final value

negligible

 $\leq$  0.01 % / K of final value

≤ 1 s

### **LED Indications**

 Power (2-colour LED) Limit value (2-colour LED)

- Parameter selected for programming Card parameter selected (progr.)

Display

Eurocard

Front panel

Connection

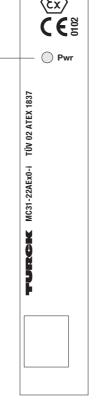
green: power "ON" - red: fault

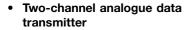
green: program. mode - yellow: at preset value

green green red (4 digits)

100 x 160 mm (DIN 41494)

Material glass-fiber reinforced epoxy resin, quality class FR4


plastic, 4TE = 20.32 mm individually interlocking connector per DIN 41612, type F, 32-pole (series z+d)


Operating temperature -25...+60 °C



### Analogue Data Transmitter MC31-22AEx0-i/24VDC two channels



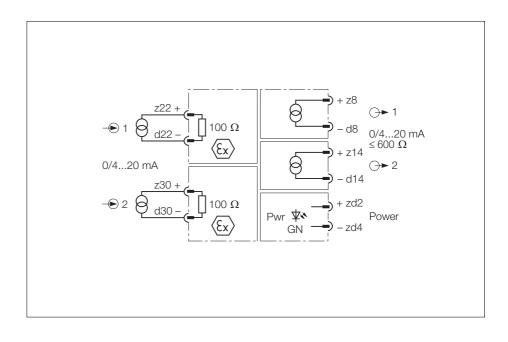




Power -

- Intrinsically safe input circuit EEx ia
- Area of application according to ATEX: II (1) GD
- Two completely isolated channels
- Input circuits 0/4...20 mA
- Output circuits 0/4...20 mA
- Galvanic isolation of standard analogue signals
- Linearity error ≤ 0.1 %

The data transmitter MC31-22AEx0-i/24VDC is designed to transfer


galvanically isolated standard current signals from the explosion hazardous to the safe area. The device features 2 channels and 0/4...20 mA input and output circuits.

Due to the 1:1 transfer characteristics a wire-break or short-circuit of the transducer circuit will be output as a current of 0 mA or > 22.5 mA.

Input, output and supply circuits are

A green LED indicates that the device is powered.

galvanically isolated from each other.





### Analogue Data Transmitter MC31-22AEx0-i/24VDC

Type MC31-22AEx0-i/24VDC

Ident-no. 9040209

 $\begin{tabular}{lll} \textbf{Supply voltage} & U_B & 19...35 \, VDC \\ & Ripple & W_{PP} & \leq 10 \, \% \\ & Power consumption & < 2 \, W \\ \end{tabular}$ 

Galvanic isolation between input and output circuits and supply voltage for 250 V<sub>rms</sub>, test voltage 4 kV<sub>rms</sub>

**Input circuits** current inputs, intrinsically safe per EN 50020

 $\begin{array}{lll} - & \text{Input resistance} & & 100\,\Omega \\ - & \text{Operating values} & & 0/4...20\,\text{mA} \end{array}$ 

Output circuits current outputs

Output current  $0/4...20 \text{ mA (load} \le 600 \Omega)$ 

Wire-break detection 0 mAShort-circuit detection > 22.5 mA

I.S. approval acc. to Certificate of Conformity TÜV 02 ATEX 1837

Max. values

 $\begin{array}{lll} - & \text{No-load voltage U}_0 & 8.6 \text{ V} \\ - & \text{Short-circuit current I}_0 & 0.4 \text{ mA} \\ - & \text{Power P}_0 & 0.86 \text{ mW} \\ \text{Characteristic curve} & \text{linear} \end{array}$ 

External inductances/capacitances L<sub>0</sub>/C<sub>0</sub>

[EEx ia/ib] IIC
 [EEx ia/ib] IIB
 1 H/6.2 μF
 1 H/55 μF

**Transfer characteristics** 

Linearity error  $\leq$  0.1 % of final value

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$ 

Pulse rise time (10 %...90 %) < 90 ms Pulse release time (90 %...10 %) < 90 ms

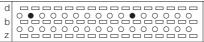
**LED Indications** 

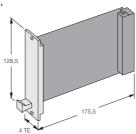
- Power green

**Eurocard** 100 x 160 mm (DIN 41494)

Base material Epoxy-resin, glass-fibre reinforced, quality class FR4,

plastic front plate, 4TE = 20,32 mm


for individual interlocking


Connection connectors according to DIN 4162

style F, 32 poles (series z+d)

Operating temperature range -25...+60 °C

Coding (no. 126)



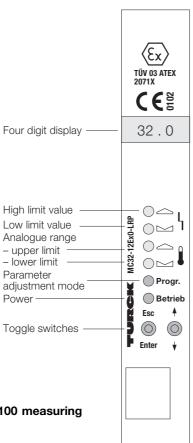




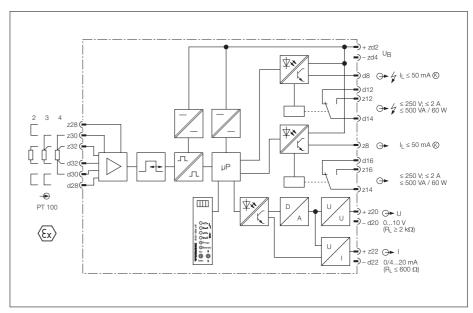
# Pt100 Measuring Amplifier MC32-12Ex0-LRP/24VDC single-channel



The Pt100 measuring amplifier type MC32-12Ex0-LRP is designed to evaluate temperature dependent changes from Pt100 RTDs (IEC 60751)


and to convert them into standard signals. A four digit display on the front of the device indicates the actual temperature, independent of the pre-set range.

The input circuit of the transducer can process signals from 2-, 3-, or 4-wire Pt100 RTDs; the input device type is selected during programming.


Line compensation for 2-wire circuits is accomplished via the transducer circuit. For this a 100  $\Omega$  resistor must be connected prior to parameter adjustment to close the input circuit of the instrument.

The current signal output (0/4...20 mA) and the voltage signal output (0...10 V) may be used at the same time. Two relay outputs and pnp short-circuit protected transistor outputs are available for setpoint and alarm indication.

When the temperature falls between the high and low limits, the pre-set outputs are energised (relay contacts closed, transistor conducting). When the temperature falls below the low pre-set value or exceeds the high preset value, the pre-set outputs are de-activated (output relay de-energised, transistor not conducting). This function can be reversed during programming.



- Single-channel Pt100 measuring amplifier
- Intrinsically safe input circuit EEx ia
- Area of application according to ATEX: II (1) GD
- Input circuit monitoring for wire-break and short-circuit
- Input for 2-, 3- or 4-wire RTDs (PT100)
- Automatic line compensation for 2-wire RTDs
- Operating range -100...+650 °C
- Simple parameterisation of:
  - Upper limit
  - Lower limit
  - Two setpoints
- Hysteresis adjustable for limit value output (in %)
- Voltage output 0...10 V and Current output 0/4...20 mA
- Galvanic isolation between input circuit, output circuit and power supply
- One transistor and one relay output for limit value and alarm indication
- Internal interface for parameter programming via PC



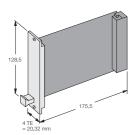


### Pt100 Measuring Amplifier MC32-12Ex0-LRP/24VDC

The input circuit is monitored for wirebreak and short-circuit conditions. The alarm outputs will de-activate during a malfunction (relay contacts open, transistor not conducting), an "Err" (Error) message will flash on the four digit display and the green Power LED turns red.

The current output during a malfunction (wire-break, short-circuit condition) can be programmed to automatically either go to 0 mA or  $\geq$  22 mA, or to follow the direction of the input signal (0 mA for wire-break,  $\geq$  22 mA for short-circuit condition).

All functions are programmed by two toggle switches on the front panel, or with personal computer (PC). The follo-wing parameters can be preselected:


- Low value of analogue range
- High value of analogue range
- Low limit value
- High limit value
- Current output: 0/4...20 mA
- Function of limit value output
- Switching hysteresis (1...30 % of adjusted measuring range)
- Analogue output characteristics during a malfunction: linear/0 mA/≥ 22 mA
- Input: 2-/3-/4-wire circuits

The pre-set output relay can be programmed:

- to energise if the temperature is within the adjusted range
- to de-energise if the temperature is within the adjusted range

The four digit LED character display on the front of the device indicates which parameter has been selected and shows the predefined parameter value.

The temperature for the full input range is adjustable from -100 °C...+650 °C (the smallest measuring span is 20 K).



### Coding (no. 16)

| d |                                             |
|---|---------------------------------------------|
| h | • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     |
| 7 | 00000000000000000                           |
|   |                                             |
|   | 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 |

| Туре                                  | MC32-12Ex0-LRP/24VDC                                                     |
|---------------------------------------|--------------------------------------------------------------------------|
| Ident-no.                             | 9041000                                                                  |
| Supply Voltage $\cup_{\mathbb{B}}$    | 20.427.6 VDC                                                             |
| Ripple W <sub>PP</sub>                | ≤ 10 %                                                                   |
| Overvoltage release                   | 33 V ± 1.5 V                                                             |
| Power/Current consumption             | < 200 mA                                                                 |
| Galvanic isolation                    | between input circuit, output circuit and supply                         |
|                                       | voltage for 250 $\mathrm{V_{rms}},$ test voltage 2.5 $\mathrm{kV_{rms}}$ |
| Input Circuit                         | intrinsically safe per EN 50020                                          |
| RTD input                             | Pt100 IEC 60751, for 2-, 3- and 4-wire inputs                            |
| Input resistance                      | 20 Ω/cable                                                               |
| Sensor current                        | < 2 mA at 0 °C; $<$ 1 mA at $<$ 100 °C                                   |
| Output Circuits                       |                                                                          |
| Voltage output                        | $010 \text{ V } (R_L \ge 2 \text{ k}\Omega)$                             |
| Current output                        | $0/420 \text{ mA (load} \leq 600 \Omega)$                                |
| Status output/alarm output            |                                                                          |
| <ul> <li>Transistor output</li> </ul> | pnp, short-circuit protected (I <sub>L</sub> ≤ 50 mA)                    |
| - Relay output                        | 1 potential-free change-over contact                                     |
| Switching voltage                     | ≤ 250 V                                                                  |
| Switching current                     | ≤2 A                                                                     |
| Switching capacity                    | ≤500 VA/60 W                                                             |
| Contact material                      | silver-alloy + 3 µm Au                                                   |

### I.S. approval acc. to Certificate of Conformity

Max. values

Interface

No-load voltage U<sub>0</sub>Short-circuit current I<sub>0</sub>

- Power P<sub>0</sub>

External Inductances/Capacitances  $L_0/C_0$ 

[EEx ia] IIC[EEx ia] IIBMarking of device

TÜV 03 ATEX 2071 X

19 V 31 mA 145 mW

2 mH/187 nF (alternatively: 5 mH/177 nF) 2 mH/1,2  $\mu$ F (alternatively: 5 mH/967 nF) 1 II (1) GD [EEx ia] IIC

-100...+650 °C (low and high values adjust.)

RS232 serial/V.24 via adapter MC-IM-232

### **Transfer Characteristics**

Effective temperature range
Temperature difference
Linearity tolerance
Effect of load impedance
Effect of supply voltage impedance
Ambient temperature sensitivity
Pulse rise time (10 %...90 %)

Pulse release time (90 %...10 %)

> 20 °C for full range ≤ 0.1 % of final value (typically 0.03 %) ≤ 0.01 % of final value

negligible

 $\leq$  0.01 % / K of full scale

< 1 s < 1 s

### **LED Indications**

Power (2-colour LED)
Limit values (2-colour LED)
Parameter selected for programming
Card parameter selected (progr.)

Display

green: power "ON" - red: fault

green: program. mode - red: at preset value

green green red (4 digits)

**Eurocard** Material

Front panel

Connection

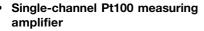
Operating temperature

100 x 160 mm (DIN 41494) glass-fiber reinforced epoxy resin,

quality class FR4 plastic, 4TE = 20.32 mm individually interlocking connector per DIN 41612,

type F, 32-pole (series z+d)

-25...+60 °C




**Automation** 

MC32-121Ex0-LRP/

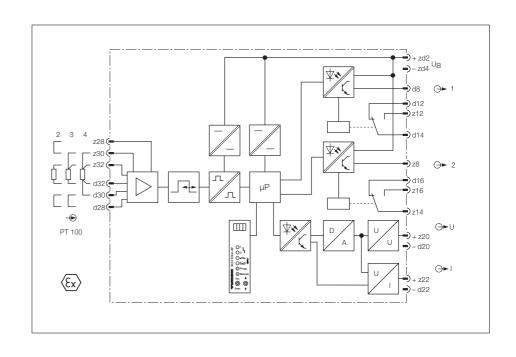


32.0 Four digit display Setpoint 1 -01 02 1 MC32-121Ex0-LRP Setpoint 2 Analogue range - upper limit - lower limit  $\bigcirc$ Parameter Progr. adjustment mode Power Betrieb Toggle switches Enter



- · Intrinsically safe input circuit EEx ia
- · Area of application according to ATEX: II (1) GD
- Input circuit monitoring for wire-break and short-circuit
- Input for 2-, 3- or 4-wire **RTDs (PT100)**
- **Automatic line compensation** for 2-wire RTDs
- Operating range -100...+650 °C
- Simple adjustment of:
  - Upper range limit
  - Lower range limit
  - Setpoint 1 and 2
- · Hysteresis adjustable for both setpoint outputs (in %)
- Voltage output 0...10 V and Current output 0/4...20 mA
- Galvanic isolation between input circuit, output curcuit and power supply
- · One transistor and one relay output for indication of limit value 1 and 2
- Internal interface for parameter programming via PC

The Pt100 measuring amplifier type MC32-121Ex0-LRP is designed to evaluate temperature


dependent changes from Pt100 RTDs (IEC 60751) and to convert them into standard signals. A four digit display on the front of the device indicates the actual temperature, independent of the pre-set range.

The input circuit of the transducer can process signals from 2, 3 or 4-wire PT100 RTDs; the input device type is selected during programming.

Line compensation for 2-wire circuits can be accomplished via the transducer circuit. For this a 100  $\Omega$  resistor must be connected prior to parameter adjustment to close the input circuit of the measuring junction.

The current signal output (0/4...20 mA) and the voltage signal output (0...10 V) may be used at the same time. Two limit value outputs, each with relay and pnp shortcircuit protected transistor, provide status indications.

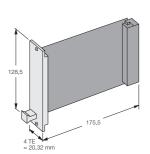
The two setpoints are independently adjustable. The MC32 transducer offers the possibility to change functions from overrange to underrange monitoring.





### Pt100 Measuring Amplifier MC32-121Ex0-LRP/24VDC

The input circuit is monitored for wirebreak and short-circuit conditions. The alarm outputs will de-activate during a malfunction (relay contacts open, transistor not conducting), an "Err" (Error) message will flash on the four digit display and the green Power LED turns red.


The current output during a malfunction (wire-break, short-circuit condition) can be programmed to automatically either go to 0 mA or  $\geq$  22 mA, or to follow the direction of the input signal (0 mA for wire-break,  $\geq$  22 mA for short-circuit condition).

All functions are programmed by two toggle switches on the front panel, or with personal computer (PC). The following parameters can be pre-selected:

- Low value of analogue range
- High value of analogue range
- Limit value 1
- Limit value 2
- Current output: 0/4...20 mA
- Function of preset outputs (overrange/underrange)
- Switching hysteresis (1...30 % of preset measuring range)
- Analogue output characteristics during a malfunction: linear/0 mA/≥ 22 mA
- Input: 2-/3-/4-wire circuits

The four digit LED character display on the front of the device indicates which parameter has been selected and shows the predefined parameter value.

The temperature for the full input range is adjustable from -100°...+650 °C (the smallest measuring span is 20 K).



### Coding (no. 16)

| ĺ | d |                                         | Γ |
|---|---|-----------------------------------------|---|
| l | b |                                         |   |
| l | Z | • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |   |

| 2 | 4 | 6 | 8 | 10 12 | 14 | 16 | 18 | 20 | 22 24 | 26 | 28 | 30 | 32 |
|---|---|---|---|-------|----|----|----|----|-------|----|----|----|----|

| Туре                                  | MC32-121Ex0-LRP/24VDC                                                                                                 |  |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Ident-no.                             | 9041001                                                                                                               |  |  |  |  |
| Supply Voltage $U_{B}$                | 20.427.6 VDC                                                                                                          |  |  |  |  |
| Ripple W <sub>PP</sub>                | ≤ 10 %                                                                                                                |  |  |  |  |
| Overvoltage release                   | 33 V ± 1.5 V                                                                                                          |  |  |  |  |
| Power/Current consumption             | ≤ 200 mA                                                                                                              |  |  |  |  |
| Galvanic isolation                    | between input circuit, output circuit and supply voltage for 250 $\rm V_{\rm ms},$ test voltage 2.5 $\rm kV_{\rm ms}$ |  |  |  |  |
| Input Circuit                         | intrinsically safe per EN 50020                                                                                       |  |  |  |  |
| RTD input                             | Pt100 IEC 60751, 2-, 3- and 4-wire inputs                                                                             |  |  |  |  |
| Input resistance                      | 20 $\Omega$ /cable                                                                                                    |  |  |  |  |
| Sensor current                        | < 2 mA at 0 °C; $<$ 1 mA at $<$ 100 °C                                                                                |  |  |  |  |
| Output Circuits                       |                                                                                                                       |  |  |  |  |
| Voltage output                        | $010 \text{ V } (R_L \ge 2 \text{ k}\Omega)$                                                                          |  |  |  |  |
| Current output                        | $0/420 \text{ mA (load} \leq 600 \Omega)$                                                                             |  |  |  |  |
| Status outputs                        |                                                                                                                       |  |  |  |  |
| <ul> <li>Transistor output</li> </ul> | pnp, short-circuit protected ( $I_L \le 50$ mA)                                                                       |  |  |  |  |
| - Relay output                        | 1 potential-free change-over contact                                                                                  |  |  |  |  |
| Switching voltage                     | ≤ 250 V                                                                                                               |  |  |  |  |
| Switching current                     | ≤ 2 A                                                                                                                 |  |  |  |  |
| Switching capacity                    | ≤ 500 VA/60 W                                                                                                         |  |  |  |  |
| Contact material                      | silver-alloy + 3 µm Au                                                                                                |  |  |  |  |
| Interface                             | RS232 serial/V.24 via adapter MC-IM-232                                                                               |  |  |  |  |

### I.S. approval acc. to Certificate of Conformity

Max. values

No-load voltage U<sub>0</sub>Short-circuit current I<sub>0</sub>

- Power Po

External Inductances/Capacitances L<sub>0</sub>/C<sub>0</sub>

[EEx ia] IIC[EEx ia] IIBMarking of device

TÜV 03 ATEX 2071 X

19 V 31 mA 145 mW

2 mH/187 nF (alternatively: 5 mH/177 nF) 2 mH/1.2 μF (alternatively: 5 mH/967 nF) ⑤ II (1) GD [EEx ia] IIC

### **Transfer Characteristics**

Effective temperature range Temperature difference Linearity tolerance Effect of load impedance

Effect of supply voltage impedance Ambient temperature sensitivity

Pulse rise time (10 %...90 %)
Pulse release time (90 %...10 %)

-100...+650 °C (high and low value adjustable)

> 20 °C for full range

 $\leq$  0.1 % of final value (typically 0.03 %)

 $\leq$  0.01 % of final value

negligible

≤ 0.01 % / K of final value

< 1 s < 1 s

### **LED Indications**

Power (2-colour LED)Limit values (2-colour LED)

Parameter selected for programmingCard parameter selected (progr.)

Display

green: power "ON" - red: fault

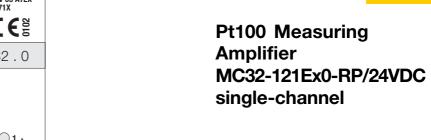
green: program. mode - yellow: at preset mode

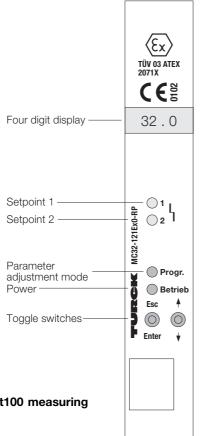
green green red (4 digits)

Eurocard 100
Material glas

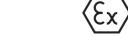
Front panel
Connection

Operating temperature


100 x 160 mm (DIN 41494) glass-fiber reinforced epoxy resin,


quality class FR4 plastic, 4TE = 20.32 mm

individually interlocking connector per DIN 41612, type F, 32-pole (series z+d)


-25...+60 °C





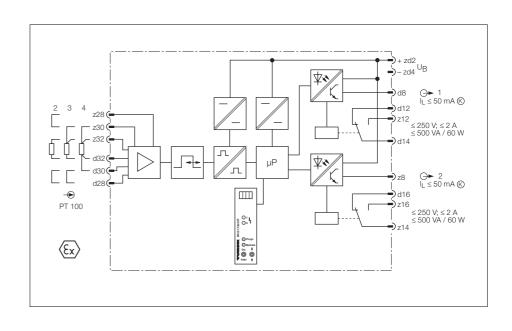


- Single-channel Pt100 measuring amplifier
- Intrinsically safe input circuit EEx ia
- Area of application according to ATEX: II (1) GD
- Input circuit monitoring for wire-break and short-circuit
- Input for 2-, 3- or 4-wire RTDs (PT100)
- Automatic line compensation for 2-wire circuits
- Operating range -100...+650 °C
- Simple adjustment of setpoint 1 and 2
- Hysteresis adjustable for both setpoint outputs (in °C)
- Galvanic isolation between input circuit, output curcuit and power supply
- One transistor and one relay output for indication of setpoint 1 and 2
- Internal interface for parameter programming via PC



The Pt100 measuring amplifier type MC32-121Ex0-RP is designed to evaluate and control

temperature dependent changes from Pt100 RTDs (IEC 60751). A four digit display on the front of the device indicates the actual temperature, independent of the pre-set range.


The input circuit of the transducer can process signals from 2, 3 or 4-wire Pt100 RTDs; the type of input device is selected during programming.

Line compensation for 2-wire circuits can be accomplished via the transducer circuit. For this, a 100  $\Omega$  resistor must be connected prior to parameter adjustment to close the input circuit of the instrument.

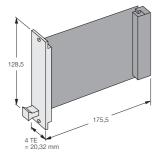
Two setpoint outputs, each with relay and pnp short-circuit protected transistor, provide status indications.

The two setpoints are independently adjustable. They are so designed that they can be used for either "overrange" or "underrange" monitoring.

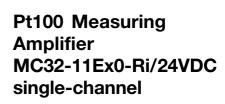
The input circuit is monitored for wirebreak and short-circuit conditions. The setpoint outputs will de-activate during a malfunction (relay contacts open, transistor not conducting). An "err" (error) message will flash on the four digit display and the green "Power" LED changes to red.

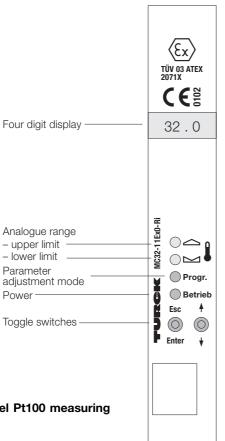





### Pt100 Measuring Amplifier MC32-121Ex0-RP/24VDC

All functions are programmed by two toggle switches on the front panel, or with personal computer (PC). The follow-ing parameters can be preselected:


- Setpoint 1
- Setpoint 2
- Function of preset outputs (underrange/overrange)
- Switching hysteresis (preset outputs): between 0.1 and 50 °C
- Input: 2-, 3-, 4-wire circuits


The four digit LED character display on the front of the device indicates which parameter has been selected and shows the predefined parameter value.

|                                                                  | M000 1015-0 DD/04//D0                                                           |
|------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Туре                                                             | MC32-121Ex0-RP/24VDC                                                            |
| ldent-no.                                                        | 9041002                                                                         |
| Supply Voltage $U_{B}$                                           | 20.427.6 VDC                                                                    |
| Ripple W <sub>PP</sub>                                           | ≤ 10 %                                                                          |
| Overvoltage release                                              | 33 V ± 1.5 V                                                                    |
| Power/Current consumption                                        | < 160 mA                                                                        |
| Galvanic isolation                                               | between input circuit, output circuit and                                       |
|                                                                  | supply voltage for 250 $V_{\text{rms}}\text{, test voltage 2.5 kV}_{\text{rm}}$ |
| Input Circuit                                                    | intrinsically safe per EN 50020                                                 |
| RTD input                                                        | Pt100 DIN IEC 60751, for 2-, 3- and 4-wire                                      |
| ·                                                                | circuits                                                                        |
| Incoming cable resistance                                        | 20 Ω/cable                                                                      |
| Sensor current                                                   | < 2 mA at 0 °C; $<$ 1 mA at $<$ 100 °C                                          |
| Output Circuits                                                  |                                                                                 |
| Stauts outputs                                                   |                                                                                 |
| - Transistor output                                              | pnp, short-circuit protected ( $I_L \le 50$ mA)                                 |
| - Relay output                                                   | 1 potential-free change-over contact                                            |
| Switching voltage                                                | ≤ 250 V                                                                         |
| Switching current                                                | ≤ 2 A                                                                           |
| Switching capacity                                               | ≤ 500 VA/60 W                                                                   |
| Contact material                                                 | silver-alloy + 3 µm Au                                                          |
| Interface                                                        | RS232 serial/V.24 via adapter MC-IM-232                                         |
| I.S. approval acc. to Certificate of Conformity                  | TÜV 03 ATEX 2071 X                                                              |
| Max. values                                                      |                                                                                 |
| <ul> <li>No-load voltage U<sub>0</sub></li> </ul>                | 19 V                                                                            |
| - Short-circuit current I <sub>0</sub>                           | 31 mA                                                                           |
| - Power P <sub>0</sub>                                           | 145 mW                                                                          |
| External Inductances/Capacitances L <sub>0</sub> /C <sub>0</sub> |                                                                                 |
| - [EEx ia] IIC                                                   | 2 mH/187 nF (alternatively: 5 mH/177 nF)                                        |
| - [EEx ia] IIB                                                   | 2 mH/1,2 μF (alternatively: 5 mH/967 nF)                                        |
| Marking of device                                                | ⓑ II (1) GD [EEx ia] IIC                                                        |
| Effective Temperature Range                                      | -100+650 °C (low and high setpoint                                              |
|                                                                  | adjustable with switches located on the front)                                  |
| LED Indications                                                  |                                                                                 |
| <ul><li>Power (2-colour LED)</li></ul>                           | green: power "ON" - red: fault                                                  |
| <ul> <li>Limit values (2-colour LED)</li> </ul>                  | green: program. mode - yellow: at preset value                                  |
| <ul> <li>Parameter selected for programming</li> </ul>           | green                                                                           |
| Display                                                          | red (4 digits)                                                                  |
| Eurocard                                                         | 100 x 160 mm (DIN 41494)                                                        |
| Material                                                         | glass-fiber reinforced epoxy resin,                                             |
|                                                                  | quality class FR4                                                               |
| Front panel                                                      | plastic, 4TE = 20.32 mm                                                         |
|                                                                  | individually interlocking                                                       |
| Connection                                                       | connector per DIN 41612,                                                        |
|                                                                  | type F, 32-pole (series z+d)                                                    |
| Operating temperature                                            | -25+60 °C                                                                       |
| Coding (no. 16)                                                  |                                                                                 |
| Coding (no. 16)                                                  | d                                                                               |







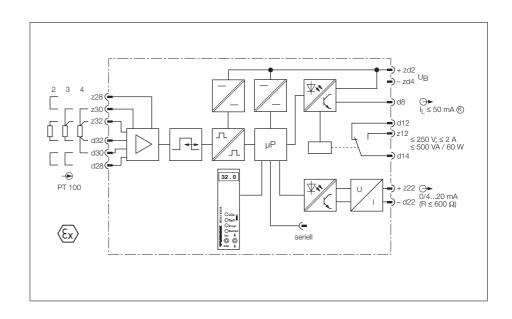




- · Intrinsically safe input circuit EEx ia
- · Area of application according to ATEX: II (1) GD
- Input circuit monitoring for wire-break and short-circuit
- Input for 2-, 3- or 4-wire **RTDs (Pt100)**
- Automatic line compensation for 2-wire circuits
- Operating range -100...+650 °C
- Simple adjustment of high limit and low limit
- Current output 0/4...20 mA
- Galvanic isolation between input circuit, output curcuit and power supply
- Alarm output for input circuit monitoring
- Internal interface for parameter programming via PC



The Pt100 measuring amplifier type MC32-11Ex0-Ri is designed to evaluate temperature


dependent changes from Pt100 RTDs (IEC 60751) and to convert them into analogue current signals from 0/4...20 mA. A four digit display on the front of the device indicates the actual temperature.

The input circuit of the transducer can process signals from 2, 3 or 4-wire Pt100 RTDs; the input device type is selected during programming.

Line compensation for 2-wire circuits can be accomplished via the transducer. To do this, a 100  $\Omega$  resistor must be connected prior to parameter adjustment to close the input circuit of the instrument.

The input circuit is monitored for wirebreak and short-circuit conditions. When faults in the input circuit occur, the alarm output de-activates (relay contact open, transistor not conducting). The display indicates "err" (Error) and the green power LED changes to red.

The current output during a malfunction in the input circuit (wire-break, short-circuit condition) can be programmed to automatically go either to 0 mA or ≥ 22 mA, or to follow the direction of the input signal (0 mA for wire-break, ≥ 22 mA for shortcircuit condition).





### Pt100 Measuring Amplifier MC32-11Ex0-Ri/24VDC

All functions are programmed by two toggle switches on the front panel, or with personal computer (PC). The following parameters can be preselected:

- Upper limit of analogue range
- Lower limit of analogue range
- Current output: 0/4...20 mA
- Analogue output characteristics during malfunction:
  - linear/0 mA/≥ 22 mA
- Input: 2-, 3-, 4-wire circuits

The four digit LED character display on the front of the device indicates which parameter has been selected and shows the predefined parameter value.

The temperature for the full input range is adjustable from -100...+650 °C (the smallest measuring span is 20 K).

| Туре                                            | MC32-11Ex0-Ri/24VDC                                                                                             |  |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Ident-No.                                       | 9041004                                                                                                         |  |  |  |  |  |  |
| Supply Voltage $U_B$                            | 20.427.6 VDC                                                                                                    |  |  |  |  |  |  |
| Ripple W <sub>PP</sub>                          | ≤ 10 %                                                                                                          |  |  |  |  |  |  |
| Overvoltage release                             | 33 V ± 1.5 V                                                                                                    |  |  |  |  |  |  |
| Power/Current consumption                       | < 180 mA                                                                                                        |  |  |  |  |  |  |
| Galvanic isolation                              | between input circuit, output circuit and supply voltage for 250 $\rm V_{rms},$ test voltage 2.5 $\rm kV_{rms}$ |  |  |  |  |  |  |
| Input Circuit                                   | intrinsically safe per EN 50020                                                                                 |  |  |  |  |  |  |
| RTD input                                       | Pt100 IEC 60751, for 2-, 3- and 4-wire circuits                                                                 |  |  |  |  |  |  |
| Incoming cable resistance                       | 20 $\Omega$ /cable                                                                                              |  |  |  |  |  |  |
| Sensor current                                  | < 2 mA at 0 °C; < 1 mA at < 100 °C                                                                              |  |  |  |  |  |  |
| Output Circuits                                 |                                                                                                                 |  |  |  |  |  |  |
| Current output                                  | $0/420 \text{ mA (load} \leq 600 \Omega)$                                                                       |  |  |  |  |  |  |
| Alarm outputs                                   |                                                                                                                 |  |  |  |  |  |  |
| <ul> <li>Transistor output</li> </ul>           | pnp, short-circuit protected ( $I_L \le 50$ mA)                                                                 |  |  |  |  |  |  |
| - Relay output                                  | 1 potential-free SPDT contact                                                                                   |  |  |  |  |  |  |
| Switching voltage                               | ≤ 250 V                                                                                                         |  |  |  |  |  |  |
| Switching current                               | ≤ 2 A                                                                                                           |  |  |  |  |  |  |
| Switching capacity                              | ≤ 500 VA/60 W                                                                                                   |  |  |  |  |  |  |
| Contact material                                | silver-alloy + 3 μm Au                                                                                          |  |  |  |  |  |  |
| Interface                                       | RS232 serial/V.24 via adapter MC-IM-232                                                                         |  |  |  |  |  |  |
| I.S. approval acc. to Certificate of Conformity | TÜV 03 ATEX 2071 X                                                                                              |  |  |  |  |  |  |

Max. values

No-load voltage U<sub>0</sub>
Short-circuit current I<sub>0</sub>
Power P<sub>0</sub>

External Inductances/Capacitances L<sub>0</sub>/C<sub>0</sub>

[EEx ia] IIC[EEx ia] IIBMarking of device

19 V 31 mA 145 mW

### Transfer Characteristics

Effective temperature range

-100...+650 °C (high and low value adjustable with switches located on the front)

> 20 °C for full range ≤ 0.1 °C / 0.1 % of final value

≤ 0.01 % of final value

negligible

≤ 0.01 %/K of final value

< 1 s < 1 s

Temperature difference Linearity tolerance

Effect of load impedance
Effect of supply voltage impedance

Ambient temperature sensitivity

Pulse rise time (10...90 %)
Pulse release time (90...10 %)

### **LED** Indication

- Power (2-colour LED)

Pulse range selected for programmingParameter selected for programming

Display

green: Power "ON" - red: fault

100 x 160 mm (DIN 41494)

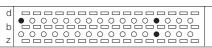
green green red (4 digits)

Eurocard

Material

Front panel

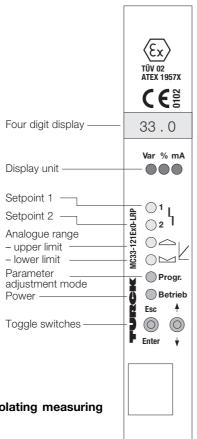
Operating temperature


rial glass-fiber reinforced epoxy resin, quality class FR4

plastic, 4TE = 20.32 mm individually interlocking

Connection connector per DIN 41612, type F, 32-pole (series z+d)

-25...+60 °C







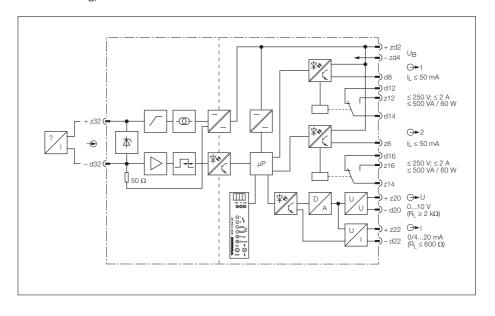

Industri<mark>al Automation</mark>





- Single-channel isolating measuring transducer
- Intrinsically safe input circuit EEx ia
- Area of application according to ATEX: II (1) GD
- Input circuit monitoring for wire-break and short-circuit
- Power supply for 2-wire measuring transducers
- Current limiting within the transmitter loop
- Constant voltage on transmitter loop
- Galvanic isolation between input circuit, output curcuit and power supply
- Simple adjustment
- Programmable, 4 digit character display
- Voltage output 0...10 V and current output 0/4...20 mA
- One transistor and one relay output for status indication of setpoint 1 and 2
- Sealed relays with hard gold-plated contacts
- Interface for parameter programming via PC

The MC33-121Ex0-LRP is used to energise intrinsically safe 2-wire measuring transducers located in the hazardous


area. The input and output circuits are isolated from each other and from the power supply.

The current signal output (0/4...20 mA) and the voltage signal output (0/2...10 V) may be used at the same time. During standard operation, the output signal corresponds to the input signal of 4...20 mA.

The intrinsically safe input circuit is statically monitored for wire-break and short-circuit conditions. When faults in the input circuit occur, both setpoint outputs deactivate (relay contacts open, transistor not conducting).

The display indicates "err" (Error) and the green power LED changes to red. The current output during a malfunction in the input circuit (wire-break, short-circuit condition) can be programmed to automatically go either to 0 mA or  $\geq$  22 mA, or to follow the direction of the input signal (0 mA for wire-break,  $\geq$  22 mA for short-circuit condition).

Two relay outputs and two pnp short-circuit protected transistor outputs are available for setpoint indications. Both setpoints are independently adjustable. They are so designed that they can be used for either "overrange" or "underrange" monitoring.





### 2-wire Loop Isolator MC33-121Ex0-LRP/24VDC

All functions are programmed by two toggle switches on the front panel, or with personal computer (PC). The following parameters can be preselected:

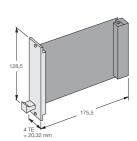
- low value of analogue range
- high value of analogue range
- setpoint 1
- setpoint 2
- function of preset outputs
- switching hysteresis for both preset outputs from 1...20 %
- character display: as a percentage value, or as a numerical value from the adjustable range, or current in input circuit
- current output during a malfunction in input circuit (linear/0 mA/≥ 22 mA)

### **Programming**

The four digit LED character display on the front of the device indicates the input signal. It can be displayed in one of three ways:

- as a percentage
- as a numerical parameter value
- current in input circuit (mA)

When the percentage is displayed, the preset levels are:


- low: 4 mA = 0 % - high: 20 mA = 100 %

The input signal is displayed as a percentile value between 0 and 100 %.

To match the display to the application, the display is programmable in values from - 999...+9999. The numerical value within this range is proportional to the input signal.

#### Example: Flow meter

Operating range 1...5 I/min = 4...20 mA: To directly display the flow in I/m, 1 is used as status display for the low preset (4 mA) and 5 for the high preset (20 mA) of the predetermined values. A numerical value between 1 and 5 will therefore indicate the signal deviation between 4 and 20 mA.



### Coding (no. 107)

| d |                                                        | Γ |
|---|--------------------------------------------------------|---|
| b | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |   |
| z | • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0                |   |
|   | 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32            | _ |

| Power Supply $U_B$        | 20.427.6 VDC |
|---------------------------|--------------|
| Ripple W <sub>PP</sub>    | ≤ 10 %       |
| Overvoltage release       | 33 V ± 1.5 V |
| Power/Current consumption | < 200 mA     |

Galvanic isolation between input circuit, output circuit and supply voltage for 250  $V_{rms}$ , test voltage 2.5  $kV_{rms}$ 

MC33-121Ex0-LRP/24 VDC

9040500

**Transducer Circuit** intrinsically safe per EN 50020

Input resistance 50  $\Omega$  Operating characteristics

 $\begin{array}{lll} - & \text{Voltage} & 15.2 \text{ V constant} \\ - & \text{Current} & 4...20 \text{ mA} \\ \text{Wire-break threshold} & \leq 2 \text{ mA} \\ \text{Short-circuit threshold} & \geq 22 \text{ mA} \\ \text{Short-circuit current limitation} & 25 \text{ mA} \pm 1 \text{ mA} \\ \end{array}$ 

**Output Circuits** 

Type

Ident-no.

Current output 0/4...20 mA (load  $\leq$  600  $\Omega$ ) Voltage output 0...10 V (R<sub>L</sub>  $\geq$  2 k $\Omega$ )

Setpoint control/alarm output 1 transistor and 1 relay output each pnp, short-circuit protected ( $I_L \le 50$  mA) Relay output 1 potential-free change-over contact

Interface RS232 serial/V.24 via adapter MC-IM-232

### I.S. approval acc. to Certificate of Conformity

Max. values

- No-load voltage U<sub>0</sub> 18,9 V- Short-circuit current I<sub>0</sub> ≤ 60 mA $- Internal resistance <math>R_i$  467 Ω

External Inductances/Capacitances

[EEx ia] IIC
 [EEx ia] IIB

Marking of device

1 mH/262 nF 18 mH/1,6 µF

TÜV 02 ATEX 1957 X

### Transfer Characteristics

Measuring range Linearity tolerance Effect of load impedance Effect of supply voltage Ambient temperature sensitivity 4...20 mA

≤ 0.1 % of final value (typically 0.03 %)

≤ 0.01 % of final value

negligible

≤ 0.005 % / K of final value

### LED Indication

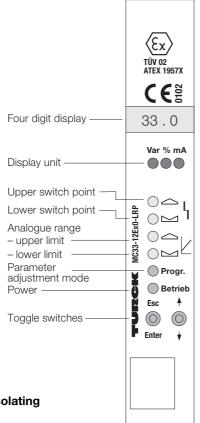
Connection

Power (2-colour LED)
 Limit values (2-colour LED)
 Pulse range programming
 green: power "ON" - red: fault
 green: program. mode - yellow: at preset value
 green

Card parameter programming
Readout in %/var/mA
Display
green
red
red (4 digits)

**Eurocard** 100 x 160 mm (DIN 41494)

Material glass-fiber reinf. epoxy resin, quality class FR4
Front panel plastic, 4TE = 20.32 mm


plastic, 4TE = 20.32 mm individually interlocking connector per DIN 41612, type F, 32-pole (series z+d)

Operating temperature -25...+60 °C



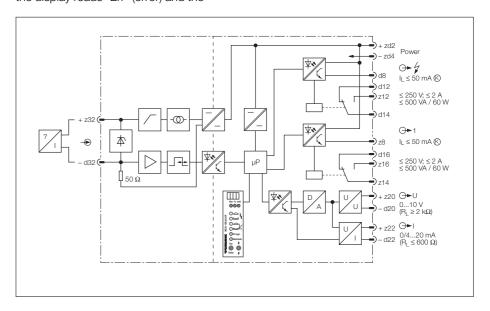
Industri<mark>al</mark> Au<mark>tomation</mark>

Isolating Measuring Transducer MC33-12Ex0-LRP/ 24VDC single-channel



- Single-channel isolating transducer
- Intrinsically safe input circuit EEx ia
- Area of application according to ATEX: II (1) GD
- Input circuit monitoring for wire-break and short-circuit
- Power supply of 2-wire measuring transducers
- Defined current limitation in measuring transducer circuit
- Constant voltage at measuring transducer
- Complete galvanic isolation
- Simple parameterisation
- 4-digit display with selectable unit
- Voltage output 0...10 VDC and current output 0/4...20 mA
- Each one transistor and one relay output for limit value indication and alarm indication
- Sealed relays with hard gold contacts
- Interface for the parameterisation via Personal Computer (PC)

The measuring transducer, type MC33-12Ex0-LRP, is used to operate


2-wire intrinsically safe measuring transducers in explosion hazardous areas. The output circuits are galvanically isolated from the power supply and the input circuits.

The device's output configuration features a current output 0/4...20 mA and a voltage signal of 0...10 V. In standard operation, the output signal accords to the input signal of 4...20 mA.

The intrinsically safe input circuit is monitored statically for wire-break and short-circuit conditions. In case of input circuit errors, the outputs are inhibited (relay denergised, transistor non-conducting) and the display reads "Err" (error) and the

green power LED changes to red. The current output performance in case of a wire-break or short-circuit in the measuring transducer circuit is parameterisable. In the event of an error, either 0 mA or  $\geq$  22 mA are output, or the output signal follows the input signal (wire-break 0 mA, short-circuit  $\geq$  22 mA).

A pnp short-circuit protected transistor output and a relay output are available for limit value indications. An upper and lower limit value are adjusted (window function). If the input current is within the limit values, the relay energises and the transistor conducts. Outside the adjusted limit values, the relay de-energises, the transistor is inhibited and the according LED illuminates. The alarm output is only switched off if an error is detected.





### Isolating Measuring Transducer MC33-12Ex0-LRP/24VDC

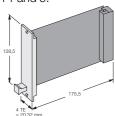
The card is parameterised either menuassisted via two front panel toggle switches or via a personal computer.

The following parameters can be adjusted:

- display value for lower measuring range limit
- display value for upper measuring range limit
- upper switch point
- lower switch point
- hysteresis for limit value output between 1 and 20 %
- display indication: in %, either a numerical value from the value range or input current
- performance of the current output in the event of input circuit errors (linear/0 mA/> 22 mA)

### Adjustment of the display

The input signal is indicated by a 4-digit display. It is possible to choose between three display modes:


- display in %
- display according to a parameterisable value range (Var)
- current in input circuit (mA)

If the display in % is selected, the lower measuring range limit (4 mA = 0 %) and the upper measuring range limit (20 mA = 100 %) are clearly defined. The input signal is reproduced as a percentage value between 0 and 100 %.

In order to adapt the display to the specific application, it is possible to assign display values in a range of –999 to +9999 to the lower and upper measuring range limits. A numerical value from the value range is then displayed which accords to the input signal

For example: Flow transmitter, operating range 1...5 l/min. = 4...20 mA:

To ensure that the display indicates the flow rate directly in I/min., the display value 1 is parameterised to indicate the lower range limit (4 mA) and the display value 5 to indicate the upper range limit (20 mA). The signal variation between 4 and 20 mA is then displayed as a numerical value between 1 and 5.



Coding (no. 107)

| d   |                                                              |  |
|-----|--------------------------------------------------------------|--|
| l b | $ \begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$ |  |
| 7   | 0000000000000000                                             |  |
|     | 2 4 6 9 10 12 14 16 19 20 22 24 26 29 20 22                  |  |

| Туре                         | MC33-12Ex0-LRP/24VDC                                            |
|------------------------------|-----------------------------------------------------------------|
| Ident-no.                    | 9040602                                                         |
| Operating voltage $U_B$      | 20.427.6 VDC                                                    |
| Ripple W <sub>pp</sub>       | ≤ 10 %                                                          |
| Over voltage threshold       | 33 V ± 1.5 V                                                    |
| Current consumption          | ≤200 mA                                                         |
| Galvanic isolation           | input circuit to output circuit and to supply                   |
|                              | voltage for 250 $V_{\rm rms}$ , test voltage 2.5 $kV_{\rm rms}$ |
| Measuring transducer circuit | intrinsically safe acc. to EN 50020                             |
| Input resistance             | 50 Ω                                                            |
| Operating values             |                                                                 |
| - Voltage                    | 15.2 V permanent voltage                                        |

4...20 mA

< 2 mA

≥22 mA

 $25 \text{ mA} \pm 1 \text{ mA}$ 

| Short-circuit threshold          |
|----------------------------------|
| Short-circuit current limitation |
|                                  |

Current

Wire-break threshold

| Output Circuits              |                                           |
|------------------------------|-------------------------------------------|
| Current output               | $0/420 \text{ mA (load} \leq 600 \Omega)$ |
| Voltage output               | 010 V ( $R_L$ ≥ 2 kΩ)                     |
| Alarm and limit value output | each one transistor and relay output      |

 Transistor output
 pnp, short-circuit protected (I<sub>L</sub> ≤ 50 mA)

 Relay output
 1 potential-free change-over contact

 - Switching voltage
 ≤ 250 V

 - Switching current
 ≤ 2 A

 - Switching capacity
 ≤ 500 VA/60 W

| - Contact material | Ag alloy + 3 µm Au                      |
|--------------------|-----------------------------------------|
| Interface          | RS232 serial/V.24 via adapter MC-IM-232 |

### I.S. approval acc. to Certificate of Conformity TÜV 02 ATEX 1957 X

Max. values

 $\begin{array}{lll} - & \text{No-load voltage U}_0 & 18.9 \text{ V} \\ - & \text{Short-circuit current I}_0 & \leq 60 \text{ mA} \\ - & \text{Internal resistance R}_i & 467 \Omega \\ \text{Charcteristic curve} & \text{trapezoidal} \end{array}$ 

External Inductances/Capacitances

- [EEx ia] IIC

### Transfer characteristics

Measuring range 4...20 mA

Linearity error ≤ 0.1 % of final value (typ. 0,03 %)

Effect of load impedance ≤ 0.01 % of final value

Effect of supply voltage impedance negligible

Ambient temperature sensitivity ≤ 0.005 %/K of final value

#### LED indications

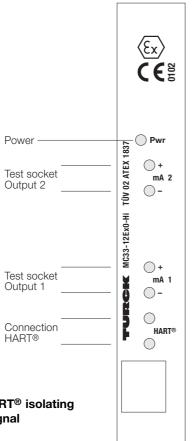
Power (dual colour LED)
Limit values (dual colour LED)
Parameterisation of measuring range
Parameterisation of card parameters

Parameterisation of card parametersDisplay unit (%/Var/mA)Display

parameterisation: green – at limit value: yellow e green

measuring operation: green - error: red

green red red (4-digit)


**Eurocard** 100 x 160 mm (DIN 41494)

Material glass-fiber reinf. epoxy resin, quality class FR4
Front panel plastic, 4TE = 20.32 mm individually interlock.
Connection connector per DIN 41612,

type F, 32-pole (series z+d)

Operating temperature -25...+60 °C





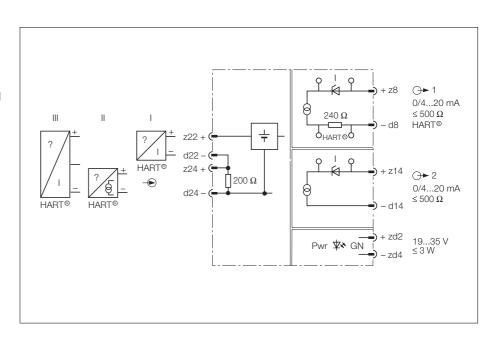
HART® Isolating
Measuring Transducer
MC33-12Ex0-Hi/24VDC
single-channel with
signal duplication

- Single-channel HART® isolating transducer with signal duplication
- Intrinsically safe input circuit EEx ia
- Area of application according to ATEX: II (1) GD
- Input circuit monitoring for wire-break and short-circuit
- Supply of measuring transducers in 2 and 3-wire technology and active 2-wire transmitters with HART® communication
- Complete galvanic isolation
- Short-circuit proof transducer circuit
- Two current outputs 0/4...20 mA
- Test sockets for analogue signals and HART® handheld on front panel



The single channel isolating transducer MC33-12Ex0-Hi is used to operate

intrinsically safe transducers in the explosion hazardous area and to transfer the measuring signal to the safe area. Alternatively, active 2-wire and passive 3-wire transmitters may be connected.


Alongside the analogue signal, the digital HART® communication signal can be transferred bi-directionally.

The front panel provides test sockets. (Ø 2 mm) for connection of a HART® handheld or a measuring device with an internal resistance of  $\leq 50~\Omega$  for testing the analogue current outputs.

A green LED indicates that the device is powered. The input circuit is galvanically isolated from the output circuit and supply voltage.

The input signal is transferred in a 1:1 mode to the outputs in the non-explosion hazardous area.

Due to the 1:1 transfer characteristic. a wire-break or short-circuit is signalled by an output current of 0 mA or > 22.5 mA.





### HART® Isolating Measuring Transducer MC33-12Ex0-Hi/24VDC

Type MC33-12Ex0-Hi/24VDC

Ident-no. 9043013

Galvanic isolation between input and output circuits and supply voltage for 250 V<sub>rms</sub>, test voltage 4 kV<sub>rms</sub>

**Transducer circuits** intrinsically safe per EN 50020

Input resistance  $200 \, \Omega$ 

Operating values

Voltage
 Current
 17.0 V at 20 mA
 0...20 mA

Short-circuit current (short-term) 60 mA (for 60 ms)

**Output circuit** 

I.S. approval acc. to Certificate of Conformity TÜV 02 ATEX 1837

External inductances/capacitances L<sub>0</sub>/C<sub>0</sub>

- [EEx ia] IIC- [EEx ia] IIB1 mH/62 nF- [EEx ia] IIB413 nF/2 mH

Marking of device 

(a) II (1) GD [EEx ia] IIC/IIB

Transfer characteristics

Linearity error ≤ 0.1 % of final value

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$ 

 $Effect of load impedance $$ \leq 0.02 \% of final value $$ Effect of supply voltage impedance $$ \leq 0.05 \%/ of final value $$ Ambient temperature sensitivity $$ \leq 0.01 \%/K of final value $$$ 

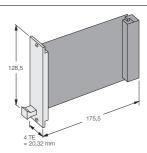
 $\begin{array}{ll} \mbox{Pulse rise time (10 \%...90 \%)} & < 90 \mbox{ ms} \\ \mbox{Pulse release time (90 \%...10 \%)} & < 90 \mbox{ ms} \end{array}$ 

**LED** indications

- Power green

**Eurocard** 100 x 160 mm (DIN 41494)

Base material Epoxy-resin, glass-fibre reinforced, quality class FR4,

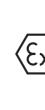

plastic front plate, 4TE = 20,32 mm

for individual interlocking

Connection connectors according to DIN 4162

style F, 32 poles (series z+d)

Operating temperature range -25...+60 °C




Coding (no. 124)

 $\begin{array}{c} \mathsf{d} \\ \mathsf{b} \\ \mathsf{z} \end{array}$ 



Isolating Measuring
Transducer
MC33-12AEx0-i/24VDC
single-channel with
signal duplication



Single-channel isolating transducer with signal duplication

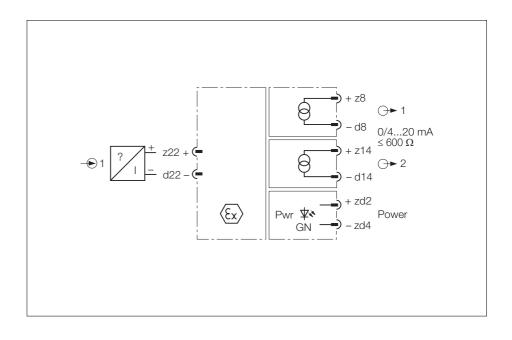
Power

**TÜV 02 ATEX 1837** 

MC33-12AEx0-i

ACE OF

- Intrinsically safe input circuit EEx ia
- Area of application according to ATEX: II (1) GD
- Supply of measuring transducers in 2-wire technology
- Short-circuit proof transducer circuit
- Two current outputs 0/4...20 mA
- · Complete galvanic isolation


The single channel isolating transducer MC33-12AEx0-i is used to operate

intrinsically safe 2-wire transducers in the explosion hazardous area and to transfer the measuring signal to the safe area.

The input signal is transferred in a 1:1 mode to the outputs in the non-explosion hazardous area.

Due to the 1:1 transfer characteristic. a wire-break or short-circuit is signalled by an output current of 0 mA or The device features galvanic isolation between input and output circuits and supply voltage.

A green LED indicates that the device is powered.





### HART® Isolating Measuring Transducer MC33-12AEx0-i/24VDC

Type MC33-12AEx0-i/24VDC

Ident-no. 9040211

Galvanic isolation between input and output circuits and supply voltage for 250 V<sub>rms</sub>, test voltage 4 kV<sub>rms</sub>

**Transducer circuits** intrinsically safe per EN 50020

Input resistance 91  $\Omega$ 

Operating values

Voltage
 Current
 Short-circuit current (short-term)
 > 17.0 V at 20 mA
 0/4...20 mA
 60 mA (for 60 ms)

**Output circuits** 

I.S. approval acc. to Certificate of Conformity TÜV 02 ATEX 1837

Max. values

External inductances/capacitaces L<sub>0</sub>/C<sub>0</sub>

- [EEx ia] IIC- [EEx ia] IIB1 mH/63 nF- [EEx ia] IIB2 mH/415 nF

Transfer characteristics

Linearity error ≤ 0.1 % of final value

Measuring tolerance  $\leq$  0.2 % Long-term error 0.05 %/year

Effect of load impedance  $\leq$  0.02 % of final value Effect of supply voltage impedance  $\leq$  0.05 %/ of final value Ambient temperature sensitivity  $\leq$  0.01 %/K of final value

 $\begin{array}{ll} \mbox{Pulse rise time (10 \%...90 \%)} & < 90 \mbox{ ms} \\ \mbox{Pulse release time (90 \%...10 \%)} & < 90 \mbox{ ms} \end{array}$ 

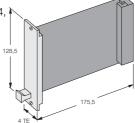
**LED** indications

Coding (no.127)

- Power green

**Eurocard** 100 x 160 mm (DIN 41494)

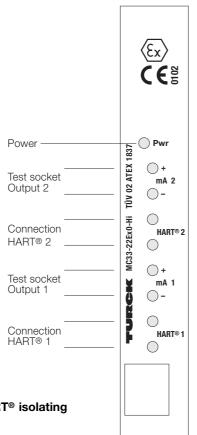
Base material Epoxy-resin, glass-fibre reinforced, quality class FR4,

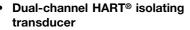

plastic front plate, 4TE = 20,32 mm

for individual interlocking

Connection connectors according to DIN 4162

style F, 32 poles (series z+d)


Operating temperature range -25...+60 °C






Industrial Automation







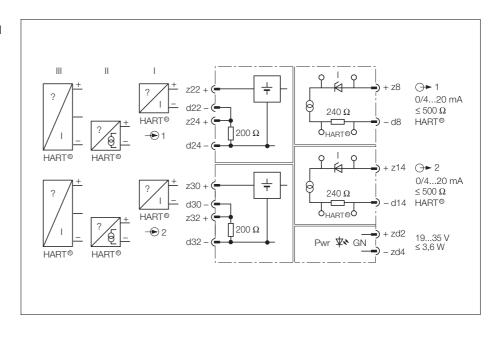
- Intrinsically safe input circuit EEx ia
- Area of application according to ATEX: II (1) GD
- Supply of measuring transducers in 2 and 3-wire technology (I + III) and active 2-wire transmitters (II) with HART® communication
- Short-circuit proof transducer circuit
- Two current outputs 0/4...20 mA
- Complete galvanic isolation
- Test sockets for analogue signals and HART® handheld on front panel

The dual-channel isolating transducer MC33-22Ex0-Hi is used to operate 2-wire

and 3-wire measuring transducers (I + III) in the explosion hazardous area and to transfer the measuring signal to the safe area. Alternatively, active 2-wire transmitters (II) may be powered.

Alongside the analogue signal, the digital HART® communication signal can be transferred bi-directionally.

The input signal is transferred in a 1:1 mode to the outputs in the non-explosion hazardous area.




Due to the 1:1 transfer characteristic. a wire-break or short-circuit is signalled by an output current of 0 mA or > 22.5 mA.

The input circuits are galvanically isolated from the output circuit and the supply voltage.

The front panel provides test sockets. ( $\emptyset$  2 mm) for connection of a HART® handheld or a measuring device with an internal resistance of  $\le$  50  $\Omega$  for testing the analogue current outputs.

A green LED indicates that the device is powered.





### HART® Measuring Isolating Transducer MC33-22Ex0-Hi/24VDC

Туре MC33-22Ex0-Hi/24VDC

Ident-no. 9043012

Supply voltage U<sub>B</sub> 19...35 VDC Power consumption ≤ 3.6 W Ripple W<sub>PP</sub> ≤ 10 %

Galvanic isolation between input and output circuits and supply voltage for 250  $V_{rms}$ , test voltage 4  $kV_{rms}$ 

Transducer circuits intrinsically safe per EN 50020

Input resistance  $200 \Omega$ 

Operating values

 Voltage > 17.0 V (at 20 mA) - Current 0...20 mA

Short-circuit current (short-term) 60 mA (for 60 ms)

**Ouput circuits** 

Current output 0/4...20 mA Load  $\leq 500 \Omega$ Wire-break detected  $0 \, \text{mA}$ Short-circuit detected  $> 22.5 \, \text{mA}$ 

I.S. approval acc. to Certificate of Conformity

TÜV 02 ATEX 1837

Max. values

22.1 V No-load voltage U<sub>0</sub> Short-circuit current I<sub>0</sub> 94 mA Power P<sub>0</sub> 738 mW - Internal resiatance Ri  $335\,\Omega$ Characteristic curve trapezoidal Internal inductances/capacitances  $\Sigma L_i/\Sigma C_i$ 5 nF/negigible

External inductances/capacitances L<sub>0</sub>/C<sub>0</sub>

- [EEx ia] IIC 1 mH/62 nF - [EEx ia] IIB 413 nF/2 mH

Marking of device 

**Transfer characteristics** 

≤ 0.1 % of final value Linearity error

Measuring tolerance ≤ 0.2 % Long-term error 0.1 %/year

Effect of load impedance ≤ 0.02 % of final value Effect of supply voltage impedance ≤ 0.05 %/ of final value ≤ 0.01 %/K of final value Ambient temperature sensitivity

Pulse rise time (10 %...90 %) < 90 ms < 90 ms Pulse release time (90 %...10 %)

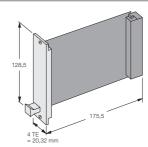
**LED** indications

Power green

Eurocard 100 x 160 mm (DIN 41494)

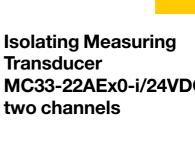
Base material Epoxy-resin, glass-fibre reinforced, quality class FR4,

plastic front plate, 4TE = 20,32 mm

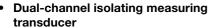

for individual interlocking

Connection connectors according to DIN 4162

style F, 32 poles (series z+d)


-25...+60 °C Operating temperature range

Coding (no.124)






# MC33-22AEx0-i/24VDC





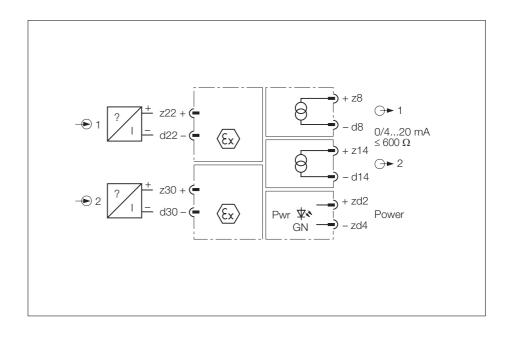


Power

- · Intrinsically safe input circuit EEx ia
- · Area of application according to ATEX: II (1) GD
- Supply of measuring transducers in 2-wire technology
- Short-circuit proof transducer circuit
- Two current outputs 0/4...20 mA
- · Complete galvanic isolation

The dual-channel isolating transducer MC33-22AEx0-i is used to operate 2-wire measuring transducers

in the explosion hazardous area and to transfer the measuring signal to the safe area.


The input signal is transferred in a 1:1 mode to the outputs in the non-explosion hazardous area.

Due to the 1:1 transfer characteristic. a wire-break or short-circuit is signalled by an output current of 0 mA or  $> 22.5 \, \text{mA}.$ 



The input circuits are galvanically isolated from the output circuit and the supply voltage.

A green LED indicates that the device is powered.





### HART® Measuring Isolating Transducer MC33-22AEx0-i/24VDC

Type MC33-22AEx0-i/24VDC

Ident-no. 9043014

Galvanic isolation between input and output circuits and supply voltage for 250 V<sub>rms</sub>, test voltage 4 kV<sub>rms</sub>

TÜV 02 ATEX 1837

**Transducer circuits** intrinsically safe per EN 50020

Input resistance 91  $\Omega$ 

Operating values

 - Voltage
 > 17.0 V (at 20 mA)

 - Current
 0/4...20 mA

 Short-circuit current (short-term)
 60 mA (for 60 ms)

**Output circuits** 

I.S. approval acc. to Certificate of Conformity

Max. values

 $\begin{array}{lll} - & \text{No-load voltage U}_0 & 22.1 \,\text{V} \\ - & \text{Short-circuit current I}_0 & 79.5 \,\text{mA} \\ - & \text{Power P}_0 & 625 \,\text{mW} \\ - & \text{Internal resistance R}_i & 395 \,\Omega \\ \text{Characteristic curve} & \text{trapezoidal} \end{array}$ 

Internal inductances/capacitancesL<sub>i</sub>/C<sub>i</sub>

 $\begin{array}{ll} - \; L_{i} & \quad \text{negligible} \\ - \; \Sigma C_{i} & \quad 5 \; \text{nF} \end{array}$ 

External inductances/capacitances  $L_0/C_0$ 

- [EEx ia] IIC- [EEx ia] IIB1 mH/63 nF2 mH/415 nF

Transfer characteristics

Linearity error  $\leq$  0.1 % of final value

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$ 

 $Effect of load impedance $$ \leq 0.02 \% of final value $$ Effect of supply voltage impedance $$ \leq 0.05 \%/ of final value $$ Ambient temperature sensitivity $$ \leq 0.01 \%/K of final value $$ Effect of load impedance $$ \leq 0.02 \% of final value $$ = 0.05 \%/K of final value $$ = 0.01 \%/K of final value $$ = 0.0$ 

Pulse rise time (10 %...90 %) < 90 ms Pulse release time (90 %...10 %) < 90 ms

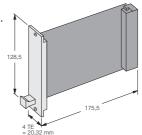
**LED Indications** 

– Power green

**Eurocard** 100 x 160 mm (DIN 41494)

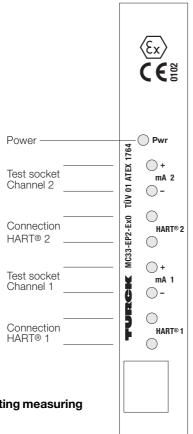
Base material Epoxy-resin, glass-fibre reinforced, quality class FR4.

plastic front plate, 4TE = 20,32 mm


for individual interlocking

Connection connectors according to DIN 4162

style F, 32 poles (series z+d)


Operating temperature range -25...+60 °C

Coding (no.127)





Industrial Automation



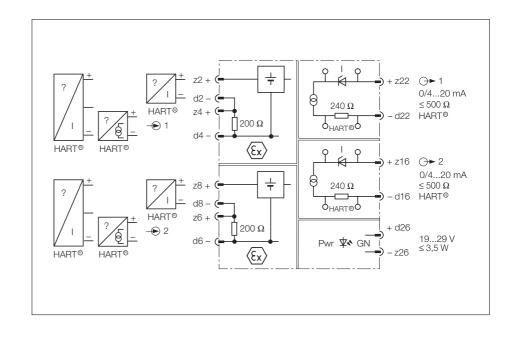
HART® Isolating
Measuring Transducer
MC33-EP2-Ex0
two channels

- Two-channel isolating measuring transducer
- Intrinsically safe input circuit EEx ia
- Area of application according to ATEX: II (1) GD
- Supply of 2 and 3-wire measuring transducers and active 2-wire transmitters with HART® communication
- Complete galvanic isolation
- Short-circuit protected transducer circuits
- Two output circuits 0/4...20 mA
- Test sockets for analogue signals and HART® handheld on front panel
- Pin configuration and functions compatible with the HART® measuring transducers, type MUS 80 and MUS 925, from FOXBORO ECKHARDT



The two-channel isolating transducer MC33-EP2-Ex0 is designed to operate

intrinsically safe transducers in hazardous areas and to transfer the measuring signal to the safe area. It is possible to operate active 2-wire or passive 3-wire transmitters.


In addition to the analogue signal, digital HART® communication signals can be transferred bidirectionally.

The front panel features test sockets ( $\emptyset$  2 mm) per channel for uninterrupted transfer of the analogue current output signals for measuring devices with an internal resistance of  $\le$  50  $\Omega$  and for connection of a HART® handheld.

A green LED indicates that the device is powered. The input circuits are galvanically isolated from the output circuits and the supply voltage.

The input signasl are transferred in a 1:1 mode to the outputs in the non-explosion hazardous area.

Due to the 1:1 transfer characteristic. a wire-break or short-circuit is signalled by an output current of 0 mA or > 22.5 mA.





### HART® Isolating Measuring Transducer MC33-EP2-Ex0

| Туре      | MC33-EP2-Ex0 |
|-----------|--------------|
| Ident-no. | 9040530      |

Operating voltage  $U_B$ 19...29 VDCInternal power consumption $\leq 3.5 \text{ W}$ Ripple  $W_{pp}$  $\leq 10 \%$ 

Galvanic isolation input circuit from output circuit and from power supply for 250 V<sub>rms</sub>

test voltage 2.5 kV<sub>rms</sub>

TÜV 01 ATEX 1764

**Transducer circuits** intrinsically safe according to EN 50020

Input resistance 200  $\Omega$ 

Operating values

Voltage
 Current
 Short-circuit current (short-term rating)
 16.5 V (at 20 mA)
 0...22 mA
 60 mA (for 60 ms)

**Output circuits** 

I.S. approval acc. to Certificate of Conformity

External inductances/capacitances L<sub>0</sub>/C<sub>0</sub>

- [EEx ia] IIC- [EEx ia] IIB63 nF/1 mH410 nF/2 mH

Transfer characteristics

Linearity error  $\leq 0.1 \%$  of final value.

Effect of supply voltage impedance ≤ 0.05 % of final value.

Ambient temperature sensitivity ≤ 0.01 %/K of final value

Pulse rise time (10 %...90 %) < 90 ms Pulse release time (90 %...10 %) < 90 ms

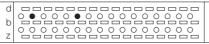
**LED Indications** 

- Power green

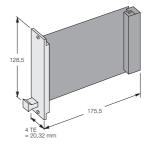
**Eurocard** 100 x 160 mm (DIN 41494)

Base material Epoxy-resin, glass-fibre reinforced, quality class FR4,

plastic front plate, 4TE = 20,32 mm

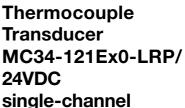

for individual interlocking

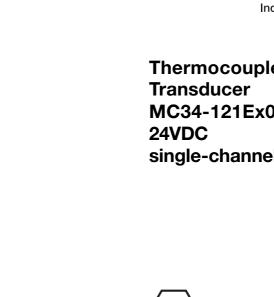
Connection connectors according to DIN 4162


style F, 32 poles (series z+d)

Operating temperature range -25...+60 °C

Coding (no. 121)








Industrial Automation





- Single-channel thermocouple transducer
- · Intrinsically safe input circuit EEx ia for thermocouples type E, J, K, R, S
- Area of Application according to ATEX: II (1) GD
- Reference point compensation:
  - internal (Ni1000),
  - constant (thermostat)
- Operating range: -270...+1700 °C (depending on thermocouple)
- Input circuit monitoring for wire-breakage
- Voltage output 0...10 V, current output 0/4...20 mA
- Galvanic isolation between input circuit, output curcuit and power supply
- One relay and transistor output each for status indication of setpoint 1 and 2
- · Common hysteresis adjustment (in %) for both setpoints
- Simple calibration via
  - front toggle switches or
  - personal computer (PC)

The thermocouple transducer type MC34-121Ex0-LRP is designed to drive thermocouple elements type E, J, K, R

and S located in the hazardous area. It evaluates temperature dependent changes from the thermocouple (acc. to IEC 584) and converts them into standard current and voltage signals.

34.0

 $\bigcirc$ 1 $_{I}$ 

 $\bigcirc$ 2

Enter

Progr.

MC34-121Ex0-LRP

Four digit display

Setpoint 1

Setpoint 2

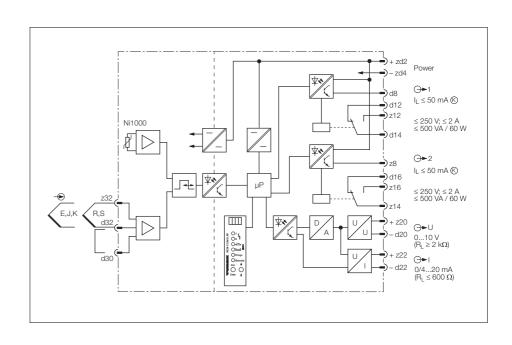
- upper limit - lower limit

Parameter

Power

Analogue range

adjustment mode


Toggle switches

Reference point compensation is accomplished internally through a Ni1000 resistor. When it is used with a thermostat, then its nominal value is selectable at the time of programming. The input circuit and the output circuit are isolated from each other and from the power supply.

The display on the front of the device indicates the actual temperature, independent of the preset range.

The current signal output (0/4...20 mA) and the voltage signal output (0...10 V) may be used at the same time.

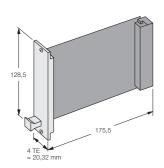
The two setpoint outputs, each with relay and pnp short-circuit protected transistor output, are independently adjustable. Setting of the switch-on and switch-off point determines the overrange or underrange monitoring function of the output relays.





### Thermocouple Transducer MC34-121Ex0-LRP/24VDC

The input circuit is monitored for wirebreak. The performance of both setpoint outputs can be selected to indicate faults in the input circuit (relays energised or deenergised, relays maintain the same position as before the fault occured). The display indicates "err" (Error) and the green Power LED changes to red.


The parameters for the current monitoring function during a wire-break are programmable. When a fault in the input circuit occurs, then the current output is either 0 mA or  $\geq$  22 mA.

### **Programming**

Card parameter programming is accomplished either with two front toggle switches, or with personal computer (PC). The following functions can be preselected:

- thermocouple type E, J, K, R, S
- reference point compensation internal (Ni1000), constant (thermostat)
- lower limit of analogue range, depending on the thermocouple used
- upper limit of analogue range, depending on the thermocouple used
- current output 0/4...20 mA
- analogue output characteristics during a malfunction:
  - 0 mA/≥ 22 mA/maintain value
- setpoint 1
- setpoint 2
- setpoint function (overrange/underrange)
- thermocouple line resistance

The selected parameters are indicated by LEDs on the front of the device. The value of the parameter will be displayed on the four digit display.



### Coding (no. 16)

| р |                   |   |
|---|-------------------|---|
| b |                   |   |
| z | 00000000000000000 |   |
|   |                   | _ |

| 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 |
|---------------------------------------------|
|---------------------------------------------|

| Туре                                                         | MC34-121Ex0-LRP/24 VDC                                                                                           |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Ident-no.                                                    | 9040510                                                                                                          |
| Supply Voltage $U_{B}$                                       | 20.427.6 VDC                                                                                                     |
| Ripple W <sub>PP</sub>                                       | ≤ 10 %                                                                                                           |
| Overvoltage release                                          | 33 V ± 1.5 V                                                                                                     |
| Current consumption                                          | ≤ 200 mA                                                                                                         |
| Galvanic isolation                                           | between input circuit, output circuit and supply voltage for 250 $\rm V_{rms}$ , test voltage 2.5 $\rm KV_{rms}$ |
| Input Circuit                                                | intrinsically safe per EN 50020                                                                                  |
| Transducer circuit                                           | thermocouples type E, J, K, R and S (IEC 584)                                                                    |
| Reference point compensation                                 | internal (Ni1000), constant (thermostat)                                                                         |
| Output Circuit                                               |                                                                                                                  |
| Current output                                               | $0/420 \text{ mA (load} \leq 600 \Omega)$                                                                        |
| Voltage output                                               | $010 \text{ V } (R_L \ge 2 \text{ k}\Omega)$                                                                     |
| Status outputs                                               | 2 preset outputs, each with 1 transistor and 1 relay output                                                      |
| Transistor output                                            | pnp, short-circuit protected ( $I_L \le 50$ mA)                                                                  |
| Relay output                                                 | 1 potential-free change-over contact                                                                             |
| <ul> <li>Switching voltage</li> </ul>                        | ≤ 250 V                                                                                                          |
| <ul> <li>Switching current</li> </ul>                        | ≤ 2 A                                                                                                            |
| <ul> <li>Switching capacity</li> </ul>                       | ≤ 500 VA/60 W                                                                                                    |
| - Contact material                                           | silver-alloy + 3 µm Au                                                                                           |
| Interface                                                    | RS232 serial/V.24 via adapter MC-IM-232                                                                          |
| I.S. approval acc. to Certificate of Conformity  Max. values | TÜV 03 ATEX 2071 X                                                                                               |
| No-load voltage II.                                          | 19 V                                                                                                             |

| I.S. approval acc. to Certificate of Conformity                  | TÜV 03 ATEX 2071 X                       |
|------------------------------------------------------------------|------------------------------------------|
| Max. values                                                      |                                          |
| <ul> <li>No-load voltage U<sub>0</sub></li> </ul>                | 19 V                                     |
| <ul> <li>Short-circuit current I<sub>0</sub></li> </ul>          | 31 mA                                    |
| - Power P <sub>0</sub>                                           | 145 mW                                   |
| External Inductances/Capacitances L <sub>0</sub> /C <sub>0</sub> |                                          |
| - [EEx ia] IIC                                                   | 2 mH/187 nF (alternatively: 5 mH/177 nF) |
| - [EEx ia] IIB                                                   | 2 mH/1.2 µF (alternatively: 5 mH/967 nF) |
| Marking of device                                                | ⟨                                        |

| Transfer Characteristics                                         |                                                    |
|------------------------------------------------------------------|----------------------------------------------------|
| Marking of device                                                |                                                    |
| - [EEx ia] IIB                                                   | $^{2}$ mH/1.2 $\mu$ F (alternatively: 5 mH/967 nF) |
| - [EEx ia] IIC                                                   | 2 mH/187 nF (alternatively: 5 mH/177 nF)           |
| External Inductances/Capacitances L <sub>0</sub> /C <sub>0</sub> |                                                    |
| <ul><li>Power P<sub>0</sub></li></ul>                            | 145 mW                                             |
| Orion direat carrent in                                          | 01111/1                                            |

| Effective temperature range        | -270+1700 °C                                                          |
|------------------------------------|-----------------------------------------------------------------------|
|                                    | (denpending on the used thermocouple)                                 |
| Linearity tolerance                | ≤ 0.1 % of full scale (typically 0.03 %)                              |
| Effect of load impedance           | ≤ 0.01 % of final value                                               |
| Effect of supply voltage impedance | negligible                                                            |
| Ambient temperature sensitivity    | ≤ 1.5 K (E, J, K); ≤ 3 K (R, S)                                       |
|                                    | maximum error in Kelvin between $T_{\text{min}}$ and $T_{\text{max}}$ |

| LED Indications                                                                            |                                                                                                    |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| <ul><li>Power (2-colour LED)</li><li>Limit values (2-colour LED)</li><li>Display</li></ul> | green: power "ON" - red: fault<br>green: program. mode - yellow: at preset value<br>red (4 digits) |
| <b>Eurocard</b><br>Material                                                                | 100 x 160 mm (DIN 41494)<br>glass-fiber reinforced epoxy resin,                                    |

|                       | quality class FR4            |
|-----------------------|------------------------------|
| Front panel           | plastic, 4TE = 20.32 mm      |
|                       | individually interlocking    |
| Connection            | connector per DIN 41612,     |
|                       | type F, 32-pole (series z+d) |
| Operating temperature | -25+60 °C                    |
|                       |                              |



### Analogue Data Transmitter MC35-11Ex0-Hi/24VDC single-channel



Single-channel analogue data transmitter

Power

Test socket

Connection

Output

**HART®** 

MC35-11Ex0-Hi TÜV 05 ATEX 2862

TOROK

**+** 

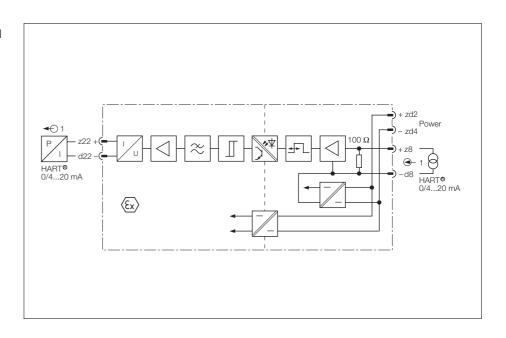
O-

HART®

- Intrinsically safe output circuits EEx ia
- Area of application according to ATEX: II (1) GD
- One input circuit 0/4...20 mA
- One output circuit 0/4..20 mA
- · Complete galvanic isolation
- Linearity ≤ 0.1 %
- Load < 600 Ω</li>
- HART® transparent
- Test sockets for analogue signals and HART® handheld on front panel

The analogue data transmitter, type MC35-11Ex0-Hi, is designed to transfer

standard analogue signals from the safe to the explosion hazardous area. The device features a single channel and output circuits from 0/4...20 mA. A green LED indicates that the device is powered.


In addition to the analogue signals, digital HART® communication signals can be transferred bi-directionally. The front panel contains test sockets (Ø 2 mm).

These are suited for connection of a HART® handheld or a measuring device with an internal resistance of  $\leq$  50  $\Omega$  to verify the analogue current outputs.

The output circuits are galvanically isolated from each other, as well as from the supply voltage and the input circuits.

This card is suited for connection of intrinsically safe actuators or process indicators in the explosion hazardous area.

The signals are transferred in a 1:1 mode; signal adaptation from 0...20 mA to 4...20 mA is not possible.





### Analogue Data Transmitter MC35-11Ex0-Hi/24VDC

| 4VDC |
|------|
|      |

Ident-no. 9043031

Operating voltage  $U_B$ 19...35 VDCRipple  $W_{pp}$  $\leq$  10 %Overvoltage threshold39 V  $\pm$  1 V

Galvanic isolation between input and output circuit and supply voltage for 250 V<sub>rms</sub>, test voltage 4 kV<sub>rms</sub>

< 2.2 W

TÜV 05 ATEX 2862

Input circuits

Current consumption

Current input 0/4...20 mA Input resistance 110  $\Omega$  Current limitation 60 mA

Output circuits intrinsically safe to EN 50020

Ex approval acc. to conformity certificate

Max. values

- Internal resistance  $R_i$  528  $\Omega$  (trapezoidal curve)

 $\begin{array}{ll} \text{Internal inductance} & \text{negligible} \\ \text{Internal capacitance} & \leq 6.3 \text{ nF} \end{array}$ 

External inductance/capacitance

- [EEx ia] IIC
 - [EEx ia] IIB
 - [EEx ia] IIB
 35/5/1 mH / 294/780/990 nF
 Marking of device
 II (1) GD [EEx ia] IIC

Transfer characteristics

Supply voltage impedance  $\leq 0.05 \%$  of final value Temperature coefficient  $\leq 0.1 \%$  of final value/K°

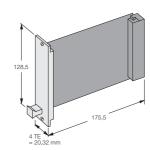
Pulse rise time (10 %...90 %)  $\leq$  90 ms Pulse release time (90 %...10 %)  $\leq$  90 ms

### LED indications

- Power green

**Eurocard** 100 x 160 mm (DIN 41494)

Base material epoxy resin, glass fibre reinforced, quality class FR4


Front panel plastic, 4TE = 20,32 mm for individual interlocking

Connection connectors to DIN 41612,

type F, 32-pole (series z+d)

Operating temperature range -25...+60 °C

Coding (no. 115)









Two-channel analogue data transmitter

Power-

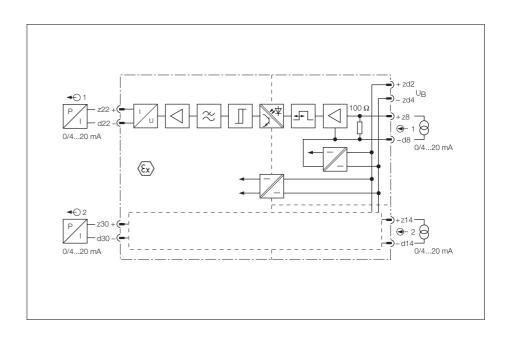
**TÜV 97 ATEX 1227X** 

MC35-22Ex0-i

TURCK

- Intrinsically safe output circuits EEx ia
- Area of application according to ATEX: II (1) GD
- Two input circuits 0/4...20 mA
- Two output circuits 0/4...20 mA
- Galvanic isolation between input circuit, output curcuit and power supply
- Linearity ≤ 0.1 %
- Temperature drift ≤ 0.005 %/K of full scale output
- Load < 600 Ω

The MC35-22Ex0-i is an analogue data driver which transfers standard analogue signals from


the safe area to the explosion hazardous area.

The dual channel device provides input and output signals of 0/4...20 mA. A green LED indicates that the device is powered.

The input and output circuits are galvanically isolated from each other and from the supply voltage.

The device is used to modulate intrinsically safe control valves or indicators located in the hazardous area. The input signals are usually provided by regulators or process control systems.

The signals are transferred in a 1:1 mode; signal adaptation from 0...20 mA to 4...20 mA is not possible.





### Analogue Data Transmitter MC35-22Ex0-i/24VDC

**Type** MC35-22Ex0-i/24 VDC

Ident-no. 9043102

Supply Voltage  $U_B$ 18...35 VDCRipple  $W_{PP}$  $\leq$  10 %Overvoltage release $39 \text{ V} \pm 1 \text{ V}$ Power/Current consumption $\leq$  4 W

Galvanic isolation between input circuit, output circuit and supply voltage for 250 V<sub>ms</sub>, test voltage 2.5 kV<sub>ms</sub>

**Input Circuits** 

Output Circuits intrinsically safe per DIN EN 50020

Current output 0/4...20 mA - Load  $\leq 600 \Omega$ 

I.S. approval acc. to Certificate of Conformity TÜV 97 ATEX 1227X

Maximum values

- Internal resistance  $R_i$  550  $\Omega$  (trapezoidal impedance characteristics)

Output power P<sub>0</sub>
 0.5 W

External inductances/capacitances

- [EEx ia/ib] IIB
 - [EEx ia/ib] IIC
 Marking of device
 5 mH/500 nF
 0.75 mH/110 nF
 W II (1) G [EEx ia] IIC

**Transfer Characteristics** 

Linearity tolerance  $\,\leq 0.1\,\,\%$  of full scale (typically 0.03 %)

Effect of load impedance negligible
Effect of supply voltage impedance negligible

Ambient temperature sensitivity ≤ 0.005 % / K of final value

 $\begin{array}{lll} \mbox{Pulse rise time (10 \%...90 \%)} & < 60 \mbox{ ms} \\ \mbox{Pulse release time (90 \%...10 \%)} & < 60 \mbox{ ms} \\ \end{array}$ 

**LED Indications**- Power

Coding (no. 115)

– Power green

**Eurocard** 100 x 160 mm (DIN 41494)

Material glass-fiber reinforced epoxy resin, quality class FR4


Front panel plastic, 4TE = 20.32 mm individually interlocking

Connection connector per DIN 41612, type F, 32-pole (series z+d)

Operating temperature -25...+60 °C

2011100







### Analogue Data Transmitter MC35-22Ex0-Hi/24VDC two channels



Two-channel analogue data transmitter

Power

Test socket

Connection

Test socket

Connection

HART® 1

Output 1

HART® 2

Output 2

**TÜV 05 ATEX 2862** 

MC35-22Ex0-Hi

**MOMOL** 

**+** 

0-

+

)-

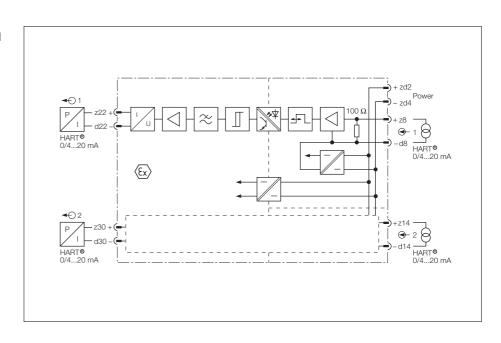
HART® 1

mA 2

HART® 2

- Intrinsically safe output circuits EEx ia
- Area of application according to ATEX: II (1) GD
- Two input circuits 0/4...20 mA
- Two output circuits 0/4...20 mA
- · Complete galvanic isolation
- Linearity ≤ 0.1 %
- Load < 600 Ω</li>
- HART® transparent
- Test sockets for analogue signals and HART<sup>®</sup> handheld on front panel

The analogue data transmitter, type MC35-22Ex0-Hi, is designed to transfer


standard analogue signals from the safe to the explosion hazardous area. The device features two channels and output circuits from 0/4...20 mA. A green LED indicates that the device is powered.

The output circuits feature galvanic isolation from each other, as well as from the supply voltage and the input circuits. In addition to the analogue signals, digital HART® communication signals can be transferred bi-directionally.

The front panel contains test sockets ( $\varnothing$  2 mm). These are suited for connection of a HART® handheld or a measuring device with an internal resistance of  $\le$  50  $\Omega$  to test the analogue current outputs.

This card is suited for connection of intrinsically safe actuators or process indicators in the explosion hazardous area.

The signals are transferred in a 1:1 mode; signal adaptation from 0...20 mA to 4...20 mA is not possible.





### Analogue Data Transmitter MC35-22Ex0-Hi/24VDC

| Туре | MC35-22Ex0-Hi/24VDC |
|------|---------------------|
| Туре | MC35-22Ex0-Hi/24VD0 |

Ident-no. 9043032

Operating voltage U<sub>B</sub> 19...35 VDC Ripple W<sub>PP</sub> ≤ 10 %

Overvoltage threshold  $39 V \pm 1 V$ Current consumption < 2.2 W

Galvanic isolation between input and output circuits and supply voltage for 250 V<sub>rms</sub>, test voltage 4 kV<sub>rms</sub>

Input circuits

0/4...20 mA Current input Input resistance 110 Ω Current limitation 60 mA

**Output circuits** intrinsically safe to EN 50020

Current output 0/4...20 mA - Load  $\leq$  600  $\Omega$ 

Ex approval acc. to conformity certificate TÜV 05 ATEX 2862

Max. values

- No-load voltage U<sub>0</sub> 19.1 V - Short-circuit current I<sub>0</sub> 59 mA

594  $\Omega$  (trapezoidal curve) - Internal resistance Ri

0.5 W - Power Po Internal inductance negligible Internal capacitance ≤ 6.3 nF

External inductance/capacitance

- [EEx ia] IIC 3.7/0,5/0,1 mH / 94/134/214 nF 35/5/1 mH / 294/780/990 nF [EEx ia] IIB Marking of device

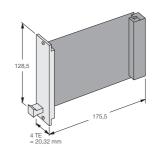
Transfer characteristics

≤ 0.1 % of final value Linearity error Measuring tolerance ≤0.2 % of final value ≤ 0.2 % / year Long-term error Effect of load impedance ≤ 0.02 % of final value Supply voltage influence ≤ 0.05 % of final value Temperature coefficient ≤ 0.0005 % of final value/K°

Pulse rise time (10 %...90 %) ≤90 ms Pulse release time (90 %...10 %) ≤90 ms

**LED** indications

- Power green

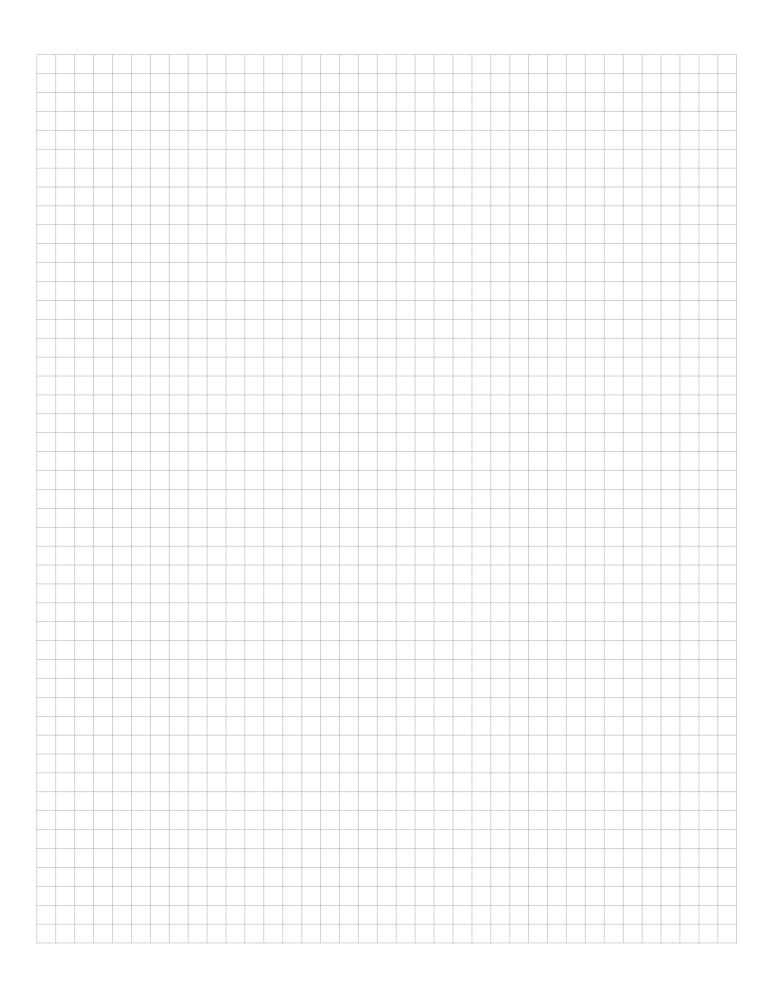

Eurocard 100 x 160 mm (DIN 41494)

Base material epoxy resin, glass fibre reinforced, quality class FR4

Front panel plastic, 4TE = 20,32 mm for individual interlocking Connection connectors to DIN 41612, type F, 32-pole (series z+d)

-25...+60 °C Operating temperature range

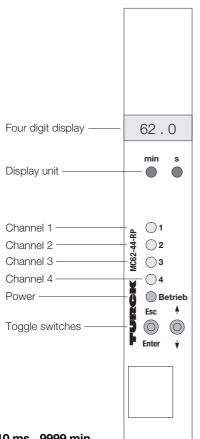
Coding (no. 128) • 0 0 0 0 0 0 0 0 0 0 0 0 0 0






# DIGITAL TIME CARDS










Industrial Automation

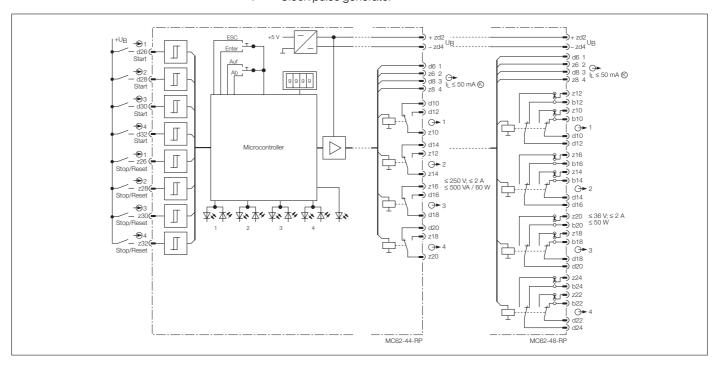
Time Based Controller Card MC62-44-RP/24VDC MC62-48-RP/24VDC



- Quartz controlled
- Operating range 10 ms...9999 min.
- Residual time indication via 4 digit character display
- Programmable card functions:
  - Time range
  - Time function
  - Time unit (sec./min.)
  - Display function
- Parameter programming via 4 front toggle switches or personal computer (PC)

The MC62-44-RP and MC62-48-RP digital timer cards provide four quartz controlled timing circuits

that are independent from each other.
These modules can perform the following timing functions:


- E = Switch ON delay
- A = Switch OFF delay
- K = One shot leading edge (true one shot)
- W = One shot leading edge (pulse width limited)
- M = Watchdog
- N = One shot trailing edge
- S = ON delay with one step leading edge contact
- T = Clock pulse generator

Parameters are programmed either via two toggle switches on the front panel, or via personal computer (PC). The following configuration options are available:

- Time range (10 ms...9999 min.)
- Time unit (min./sec)
- Time function (mode)
- RESET or INHIBIT input
- Display function

A four digit character display in the front of the device provides readout of one of the following preset parameters:

- Time range
- Status indication of all four channels
- Display OFF





### Time Based Controller Card MC62-44-RP/24VDC/MC62-48-RP/24VDC

### **Residual Time Indication**

The preset time range is indicated via LEDs on the front of the device, the residual time indication is given by the display.

### **Status Indication of All Four Channels**

The four digit display indicates the status of all four time ranges using the following symbols:

| • | t |
|---|---|
|---|---|

time is running



time cycle not activated no time elapsed



input activated time elapsed



reset input activated

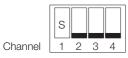


time inhibit input activated

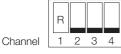
## Examples of status indication on display:

- No signal, no activated timing cycle




Timing cycle 1 is active, time is running. Timing cycles 2...4 not active, no trigger pulse.




 Timing cycle 1 activated, time has run out, time cycles 2...4 not active, no trigger pulse.



Time inhibit pulse activated on auxiliary input channel 1:



Reset activated on auxiliary input channel 1:



### **Display Off**

In this mode, the display is not illuminated to reduce the current consumption of the card to a minimum.

### **Outputs**

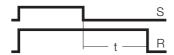
Each channel has one relay output and one pnp short-circuit protected transistor output.

The output status is indicated via a two-colour LED:

yellow: output activated (relay energised, transistor conducting).

If the display shows the time of one channel only, then the active channel has an illuminated green LED.




### Time Based Controller Card MC62-44-RP/24VDC/MC62-48-RP/24VDC

Industri<mark>al</mark> Au<mark>tomation</mark>

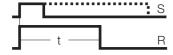
### Timing Functions (S = control contact; R = relay/transistor output)

### A OFF Delay

After closing contact S, the output relay R energises immediately. After opening control contact S, the output relay drops out according to the set time delay



### **E** ON Delay


After closing contact S, the output relay R energises according to the set time delay and remains so until control contact S opens.



### K One-shot Leading Edge

(True Leading Edge)

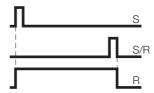
After closing control contact S, (pulse or constant contact), the output relay R energises immediately and drops out at the end of the set time delay. S OFF has no influence on R



### M Watchdog

The output relay R energises; the set timer resets with rising and falling edges of S. R de-energises when the set time has elapsed without a change of state in S.

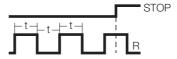



### N One-shot Trailing Edge

After driving and falling out of S, the output relay R energises for the set time t.



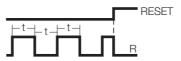
## S ON Delay with one shot leading edge contact


After driving by S, S/R and R energise for the set times. S/R and R fall back when S switches out prematurely.



### T Pulser/Counter

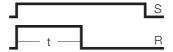
A: STOP/OFF


R pulses until STOP/ON and the pulse cycle time is over.



### **B: RESET OFF**

R pulses until RESET/ON;


The pulse cycle time is then reset.



### W One-Shot leading edge

(Pulse Width Limited)

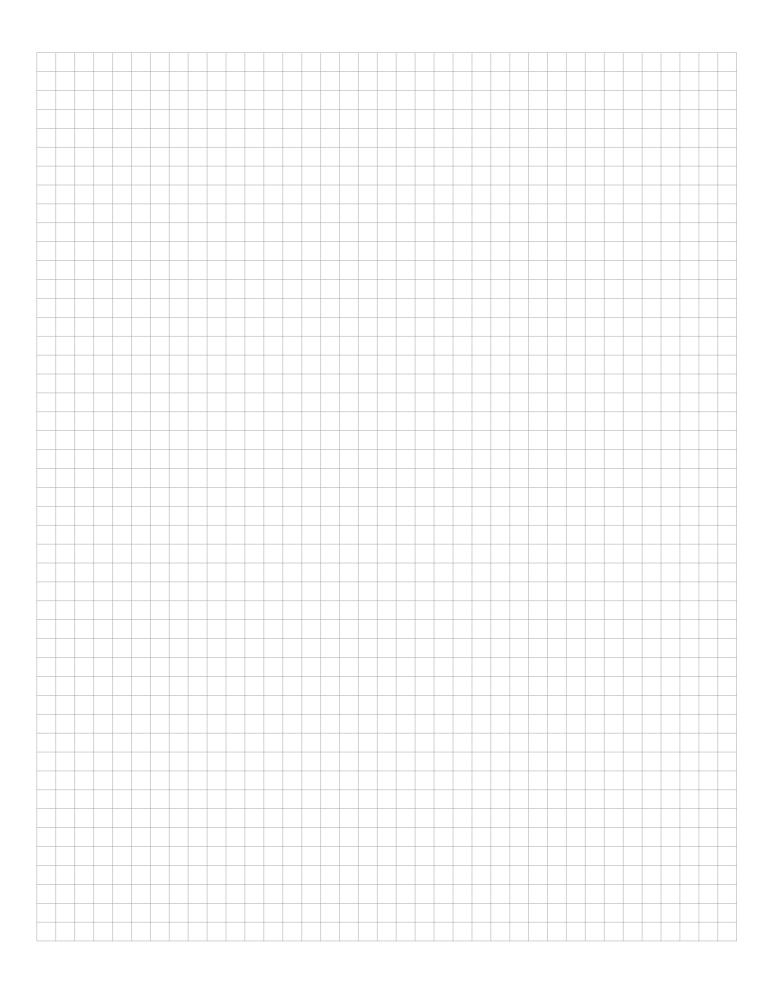
S ON energises R for the duration of t.



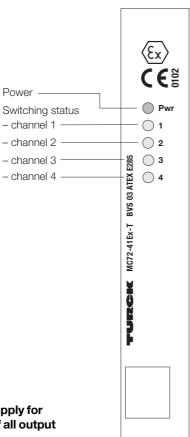


### Time Based Controller Card MC62-44-RP/24VDC/MC62-48-RP/24VDC

| Type                                                             | MC62-44-RP/24VDC                                                                                                                                                 | MC62-48-RP/24VDC                                |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| <b>Type</b><br>Ident-no.                                         | 9057300                                                                                                                                                          | 9057303                                         |
| dent-no.                                                         | 3007 300                                                                                                                                                         | 9007 000                                        |
| Supply Voltage U <sub>B</sub>                                    | 20.427.6 VDC                                                                                                                                                     | 20.427.6 VDC                                    |
| Ripple W <sub>PP</sub>                                           | ≤ 10 %                                                                                                                                                           | ≤ 10 %                                          |
| Power/Current consumption                                        | < 200 mA                                                                                                                                                         | < 200 mA                                        |
| ·                                                                |                                                                                                                                                                  |                                                 |
| Input Circuit                                                    | 24 VDC input                                                                                                                                                     | 24 VDC input                                    |
|                                                                  | for 3-wire inputs, mechanical contacts                                                                                                                           | for 3-wire inputs, mechanical contacts          |
| Input current                                                    | approx. 4 mA/channel                                                                                                                                             | approx. 4 mA/channel                            |
| 0 signal / 1 signal                                              | 05 VDC/1830 VDC                                                                                                                                                  | 05 VDC/1830 VDC                                 |
| Output Circuits                                                  | 1 relay and 1 transistor output/channel                                                                                                                          | 1 relay and 1 transistor output/channel         |
| Transistor output                                                | pnp, short-circuit protected (I <sub>L</sub> ≤ 50 mA)                                                                                                            | pnp, short-circuit protected ( $I_L \le 50$ mA) |
| Relay output                                                     | 1 potential-free SPDT contact                                                                                                                                    | 2 potential-free SPDT contacts                  |
|                                                                  | ≤ 250 V                                                                                                                                                          | ≤ 36 V                                          |
| <ul><li>Switching voltage</li><li>Switching current</li></ul>    | ≤ 2 A                                                                                                                                                            | ≤ 30 V<br>≤ 2 A                                 |
| <ul> <li>Switching capacity</li> </ul>                           | ≤ Z A<br>< 500 VA/60 W                                                                                                                                           | ≤ 2 A<br>≤ 50 W                                 |
| <ul> <li>Switching capacity</li> <li>Contact material</li> </ul> | ≤ 500 VA/60 VV<br>silver-alloy + 3 µm Au                                                                                                                         | ≤ 50 W<br>silver-alloy + 3 µm Au                |
| – Contact Material                                               | siivei-aiioy + 3 μπ Au                                                                                                                                           | Silver-alloy + 3 µiTi Au                        |
| Time Cycles                                                      |                                                                                                                                                                  |                                                 |
| Time range                                                       | 10 ms9999 min.                                                                                                                                                   | 10 ms9999 min.                                  |
|                                                                  | (adjustable on front of device)                                                                                                                                  | (adjustable on front of device)                 |
| Repeat accuracy                                                  |                                                                                                                                                                  |                                                 |
| - Electronic output                                              | 1 ms                                                                                                                                                             | 1 ms                                            |
| - Relay output                                                   | 10 ms                                                                                                                                                            | 10 ms                                           |
| Voltage stability                                                | (negligible)                                                                                                                                                     | (negligible)                                    |
| Temperature stability                                            | 100 ppm                                                                                                                                                          | 100 ppm                                         |
| Max. range tolerance                                             | 1 ms                                                                                                                                                             | 1 ms                                            |
| Trigger duration                                                 | < 1 ms                                                                                                                                                           | < 1 ms                                          |
| Time delay before availability                                   | ≤1 ms                                                                                                                                                            | ≤ 1 ms                                          |
| Reset time during time cycle                                     | 1 ms                                                                                                                                                             | 1 ms                                            |
| Interface                                                        | DS020 porial V04 with MC IM 020 adoptor                                                                                                                          |                                                 |
| interrace                                                        | RS232, serial, V.24 with MC-IM-232 adapter.<br>This MC-IM-232 adapter must be installed fo                                                                       |                                                 |
|                                                                  | •                                                                                                                                                                |                                                 |
|                                                                  | This adapter is used to connect the card with                                                                                                                    | •                                               |
|                                                                  | has a built-in power supply so the card can be programmed without any auxiliary power. The adapter comes with the necessary software. For documentation purposes |                                                 |
|                                                                  | all data can be stored in a Personal Compute                                                                                                                     | , ,                                             |
|                                                                  | ali uata can de storeu in a Personal Computi                                                                                                                     | 5i.                                             |
| LED Indications                                                  |                                                                                                                                                                  |                                                 |
| - Power                                                          | green                                                                                                                                                            | green                                           |
| - Status indication for each channel                             | programming: green                                                                                                                                               | programming: green                              |
|                                                                  | output energised: yellow                                                                                                                                         | output energised: yellow                        |
| <ul> <li>Unit of measure (sec/min)</li> </ul>                    | red                                                                                                                                                              | red                                             |
| Display                                                          | red (4 digits)                                                                                                                                                   | red (4 digits)                                  |
| Eurocard                                                         | 100 x 160 mm (DIN 41494)                                                                                                                                         |                                                 |
| Material                                                         | glass-fiber reinforced epoxy resin, quality class                                                                                                                | ss FR4                                          |
| Front panel                                                      | plastic, 4TE = 20.32 mm                                                                                                                                          |                                                 |
| Tronc parior                                                     | individually interlocking                                                                                                                                        |                                                 |
| Connection                                                       | connector per DIN 41612,                                                                                                                                         | 128,5                                           |
| Comicotion                                                       | type F, 32-pole (series z+d)                                                                                                                                     |                                                 |
| Operating temperature                                            | -25+60 °C                                                                                                                                                        |                                                 |
| Operating temperature                                            | -20+00 G                                                                                                                                                         |                                                 |
|                                                                  |                                                                                                                                                                  | 175,5                                           |







# SOLENOID DRIVERS/ INTRINSICALLY SAFE POWER SUPPLIES











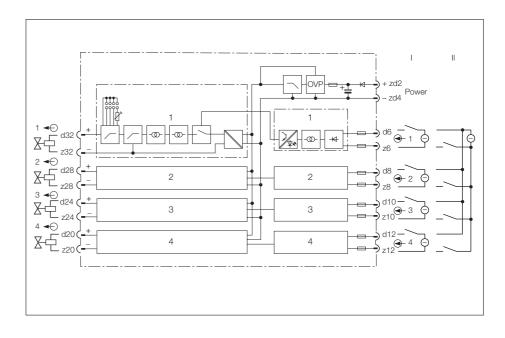
Solenoid Drivers MC72-41Ex-T/24VDC MC72-42Ex-T/24VDC four channels



- Auxiliary power supply for common supply of all output circuits
- Intrinsically safe output circuits EEx ib
- Area of application according to ATEX: II (2) GD
- Galvanic isolation of input circuits from power supply
- Galvanic isolation of output circuits from each other and from and power supply
- 3 selectable fixed output voltages or freely adjustable output voltage

The MC72-41/42Ex-T solenoid drivers are 4-channel devices with intrinsically safe output circuits. Each output

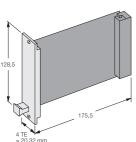
provides an isolated supply voltage with limited voltage and current approved to protection class [EEx ib] IIC. This device is typically used in valve control applications and to actuate transmitters, indicators or displays installed in explosion hazardous areas.


The control circuits are galvanically isolated from each other and from the supply voltage. The input load is very low due to the auxiliary power supply of the solenoid driver. The input current is limited to typ. 4.5 mA.

The output voltage for each channel is jumper programmable:

- MC72-41: 2.5...13.5 V/5 V/12 V/15 V
- MC72-42: 2.5...20 V/5 V/12 V/24 V

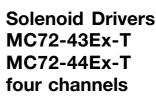
In range 1 (2.5...13.5 V or 2.5...20 V) the voltage can be adjusted between the lowest output voltage (2.5 V left end stop) and the highest output voltage (13.5 V/  $20\ V$  right end stop) by means of a potentiometer. This allows accurate selection of the output voltage to fit each application.

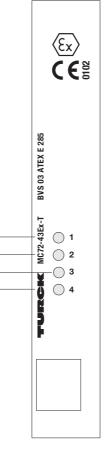

The intrinsically safe output circuits may not be connected together.

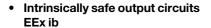




### Solenoid Drivers MC72-41Ex-T/24VDC/MC72-42Ex-T/24VDC


| Туре                                              | MC72-41Ex-T/24VDC                             | MC72-42Ex-T/24VDC                             |
|---------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| ldent-no.                                         | 9071101                                       | 90734                                         |
| Supply Voltage $\cup_{\mathbb{B}}$                | 1835 VDC                                      | 1835 VDC                                      |
| Ripple W <sub>PP</sub>                            | ≤ 10 %                                        | ≤ 10 %                                        |
| Overvoltage release                               | 39 V ± 1.5 V                                  | 39 V ± 1.5 V                                  |
| Power/Current consumption                         | ≤ 9 W                                         | ≤ 7 W                                         |
| Galvanic isolation                                | between input circuit, output circuit         | between input circuit, output circuit         |
|                                                   | and supply voltage for 250 V <sub>rms</sub> . | and supply voltage for 250 V <sub>rms</sub> , |
|                                                   | test voltage 2.5 kV <sub>rms</sub>            | test voltage 2.5 kV <sub>rms</sub>            |
| nput Circuits                                     | 1035 VDC                                      | 1035 VDC                                      |
| 'OFF" signal level                                | ≤ 5 V                                         | ≤ 5 V                                         |
| 'ON" signal level                                 | ≥ 10 V                                        | ≥ 10 V                                        |
| Input current                                     | 4 mA                                          | 4 mA                                          |
| Output Circuits                                   | intrinsically safe per EN 50020               | intrinsically safe per EN 50020               |
| Voltage                                           | 2.513.5 V/5 V/12 V/15 V (programmable)        | 2.520 V/5 V/12 V/24 V (programmable)          |
| Current                                           | ≤ 60 mA, short-circuit protected              | ≤ 25 mA, short-circuit protected              |
| Switching frequency                               | ≤ 250 Hz                                      | ≤ 250 Hz                                      |
| Ex-Approval acc. to Certification of Confe        | ormity BVS 03 ATEX E285                       | BVS 03 ATEX E285                              |
| Maximum nominal values                            |                                               |                                               |
| <ul> <li>No-load voltage U<sub>0</sub></li> </ul> | ≤ 15.6 V                                      | ≤ 25.3 V                                      |
| - Short-circuit current I <sub>0</sub>            | ≤ 66.5 mA                                     | ≤ 28.5 mA                                     |
| - Power P <sub>0</sub>                            | ≤ 1.04 W                                      | ≤ 0.72 W                                      |
| External Inductances/Capacitances                 | [EEx ib] IIC                                  | [EEx ib] IIC                                  |
| - [EEx ib] IIC                                    | 1 mH/120 nF                                   | 1 mH/30 nF                                    |
| - [EEx ib] IIB                                    | 1 mH/450 nF                                   | 1 mH/150 nF                                   |
| LED Indications                                   |                                               |                                               |
| <ul> <li>Status indication</li> </ul>             | yellow                                        | yellow                                        |
| - Power                                           | green                                         | green                                         |
| Eurocard                                          | 100 x 160 mm (DIN 41494)                      | 100 x 160 mm (DIN 41494)                      |
| Material                                          | glass-fiber reinforced epoxy resin,           | glass-fiber reinforced epoxy resin,           |
|                                                   | quality class FR4                             | quality class FR4                             |
| Front panel                                       | plastic, 4TE = 20.32 mm                       | plastic, 4TE = 20.32 mm                       |
|                                                   | individually interlocking                     | individually interlocking                     |
| Connection                                        | connector per DIN 41612,                      | connector per DIN 41612,                      |
|                                                   | type F, 32-pole (series z + d)                | type F, 32-pole (series z + d)                |
| Operating temperature                             | -25+60 °C                                     | -25+60                                        |
| Coding                                            | No. 6                                         | No. 5                                         |
|                                                   | d 000000000000000000000000000000000000        | b 000000000000000000000000000000000000        |





 <sup>2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32</sup> 



Industri<mark>al</mark> Au<mark>tomation</mark>







Switching status - channel 1 ——

- channel 2

- channel 3

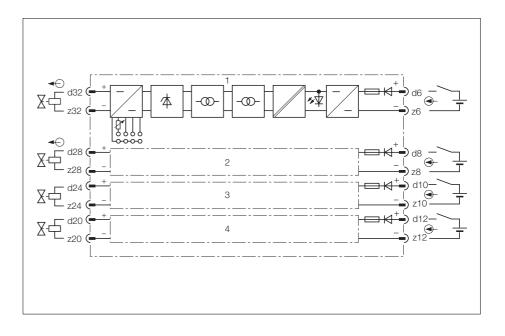
- channel 4-

- Area of application according to ATEX: II (2) GD
- · Galvanic isolation of all channels
- Four independently operating channels without auxiliary power
- 3 selectable fixed output voltages or freely adjustable output voltage

The MC72-43/44 solenoid driver is a 4 channel device with intrinsically safe output circuits.

Each output provides an isolated supply voltage with limited voltage and current approved to protection class [EEx ib] II C. This device is typically used in valve control applications and to actuate transmitters, indicators or displays installed in explosion hazardous areas.

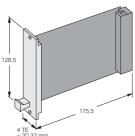
As this card requires no auxiliary power, it can be used in safety relevant applications. The direct control ensures that no voltage is present at the output when the input voltage is turned off.



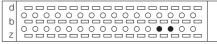

The output voltage for each channel is jumper programmable:

- MC72-43: 3...14 V/5 V/12 V/15 V
- MC72-44: 5...23 V/5 V/12 V/24 V

In range 1 (3...14 V or 5...23 V), the voltage can be adjusted between the lowest output voltage (left end stop) and the highest output voltage (right end stop) by means of a potentiometer. This allows accurate selection of the output voltage to fit each application.


The intrinsically safe output circuits may not be connected together.



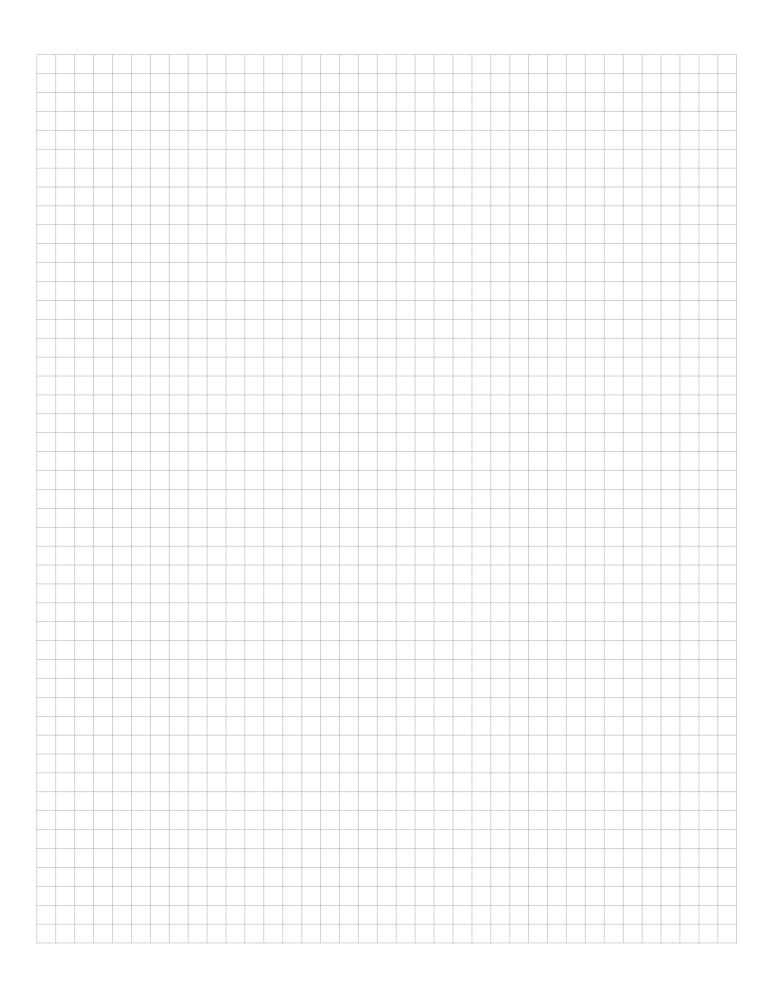



### Solenoid Drivers MC72-43Ex-T/MC72-44Ex-T

| Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MC72-43Ex-T                                                                              | MC72-44Ex-T                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| dent-no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90 713                                                                                   | 90 714                                                                              |
| Galvanic isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | output circuit from input circuit 250 V <sub>rms</sub> test voltage 2.5kV <sub>rms</sub> | output circuit from input circuit 250 $V_{\rm rms}$ test voltage 2.5k $V_{\rm rms}$ |
| Input Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                     |
| "OFF" signal level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≤ 2 V                                                                                    | ≤ 2 V                                                                               |
| "ON" signal level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2030 VDC                                                                                 | 2030 VDC                                                                            |
| Input current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤ 100 mA                                                                                 | ≤ 100 mA                                                                            |
| Overvoltage release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33 V ± 1.5 V                                                                             | 33 V ± 1.5 V                                                                        |
| Output Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | transistor output                                                                        | transistor output                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | intrinsically safe (DIN EN 50020)                                                        | intrinsically safe (DIN EN 50020)                                                   |
| Output voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 314 V/5 V/12 V/15 V (programmable)                                                       | 523 V/5 V/12 V/24 V (programmable)                                                  |
| Output current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≤ 60 mA, short-circuit protected                                                         | ≤ 25 mA, short-circuit protected                                                    |
| Switching frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ≤ 10 Hz                                                                                  | ≤ 10 Hz                                                                             |
| Ex-Approval acc. to Certification of Conf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | formity BVS 03 ATEX E285                                                                 | BVS 03 ATEX E285                                                                    |
| Maximum nomial values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          |                                                                                     |
| - No-load voltage U <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ≤ 15.6 V                                                                                 | ≤ 25.3 V                                                                            |
| - Short-circuit current I <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≤ 66.5 mA                                                                                | ≤ 28.5 mA                                                                           |
| - Power P <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≤ 1.04 W                                                                                 | ≤ 0.72 W                                                                            |
| External Inductances/Capacitances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                                                     |
| - [EEx ib] IIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 mH/120 nF                                                                              | 1 mH/30 nF                                                                          |
| - [EEx ib] IIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 mH/450 nF                                                                              | 1 mH/150 nF                                                                         |
| LED Indications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                     |
| - Status indication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | yellow                                                                                   | yellow                                                                              |
| Eurocard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 x 160 mm (DIN 41494)                                                                 | 100 x 160 mm (DIN 41494)                                                            |
| Vlaterial Vlater | glass-fiber reinforced epoxy resin,                                                      | glass-fiber reinforced epoxy resin,                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | quality class FR4                                                                        | quality class FR4                                                                   |
| Front panel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | plastic, 4TE = 20.32 mm                                                                  | plastic, 4TE = 20.32 mm                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | individually interlocking                                                                | individually interlocking                                                           |
| Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | connector per DIN 41612,                                                                 | connector per DIN 41612,                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | type F, 32-pole (series z + d)                                                           | type F, 32-pole (series z + d)                                                      |
| Operating temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -25+60 °C                                                                                | -25+60 °C                                                                           |
| Coding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No. 4                                                                                    | No. 3                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d                                                                                        | d                                                                                   |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                                                                                     |

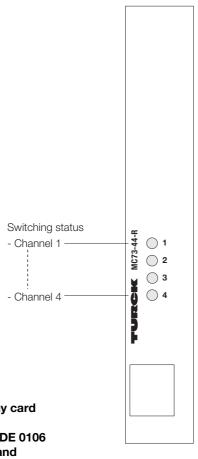


| d      |                                         |  |
|--------|-----------------------------------------|--|
| b<br>z | 000000000000000000000000000000000000000 |  |






# COUPLERS





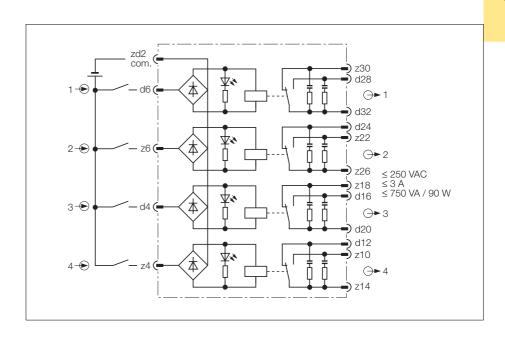





### Relay Card MC73-44-R/24VUC four channels



- Four-channel relay card
- Isolation as per VDE 0106 between control and output circuits
- Bridge rectifier to accept npn, pnp or AC inputs
- Relay as per VDE 0435
- Printed circuit boards and connectors as per VDE 0110
- 8 mm clearances and creepage distances between contacts and input circuits
- Output contacts protected by RC snubber
- Sealed relays with hard gold-plated contacts


The MC73-44-R is a 4 channel relay card which provides isolation between contacts and input circuits (8 mm/4 kV).

A carefully arranged layout of the printed circuit board ensures maximum clearances and creepage distances. A bridge rectifier connected to the relay coils allows the card to operate with either pnp (current sinking), npn (current sourcing) or AC input devices.

The status of each output relay is indicated by an associated LED on the front panel of the card.

The relay card features output contacts protected by an RC snubber. This enables switching of large inductive loads.

In addition, the use of hard gold-plated contacts enables the card to be used for general control task.





### Relay Card MC73-44-R/24VUC

Type MC73-44-R/24VUC

Ident-no. 90770

Clearances and Creepage Distances

between control circuit and contacts 8 mm/4 kV

**Input Circuits** 

20.4...27.6 VUC Input current Power/current consumption ≤ 30 mA per channel

**Output Circuits** relay output

Contacts 1 change-over contact, silver-alloy + 3  $\mu m$  Au,

with RC snubber circuit

Switching voltage ≤ 250 V Switching current/continuous current ≤3 A

≤ 750 VA/90 W Switching capacity Switching frequency ≤ 10 Hz

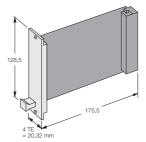
**LED Indications** 

Connection

- Status indication yellow

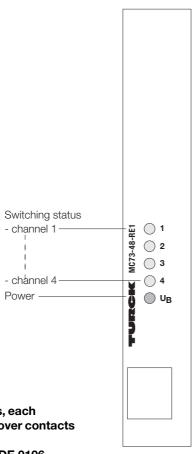
**Eurocard** 100 x 160 mm (DIN 41494) Material

glass-fiber reinforced epoxy resin,


quality class FR4

Front panel plastic, 4TE = 20.32 mm

individually interlocking connector per DIN 41612,


type F, 32-pole

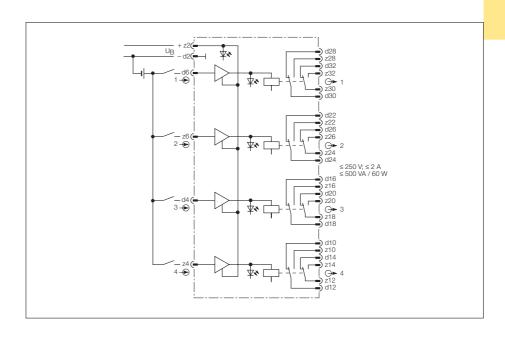
Operating temperature -25...+60 °C










- Four relay outputs, each with two change-over contacts
- Isolation as per VDE 0106 between control and output circuit
- Amplifier input
- Relay as per VDE 0435
- Printed circuit boards and connectors as per VDE 0110

The MC73-48-R is a 4 channel relay card which provides isolation between output contacts and input circuits (8 mm/4 kV).

A carefully arranged layout of the printed circuit board ensures maximum clearances and creepage distances. A bridge rectifier connected to the relay coils allows the card to operate with either pnp (current sinking), npn (current sourcing) or AC input devices.

The use of silver-alloy and 3 µm Au contacts enables the cards to be used for large loads as well as general control tasks.

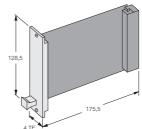
The relay cards are equipped with input signal amplifiers. This makes them suitable for low power input signal processing. At a typical current consumption of 2 mA, the input voltage for the relay card is 17...30 VDC.





### Relay Card MC73-48-RE3/24VDC

| Туре                                 | MC73-48-RE3/24VDC                              |  |
|--------------------------------------|------------------------------------------------|--|
| Ident-no.                            | 90791                                          |  |
| Clearances and Creepage Distances    |                                                |  |
| between control circuit and contacts | 8 mm/4 kV                                      |  |
| Supply Voltage $U_{\text{B}}$        | 20.427.6 VDC                                   |  |
| Ripple W <sub>PP</sub>               | ≤ 10 %                                         |  |
| Current consumption                  | ≤ 120 mA                                       |  |
| Input Circuits                       |                                                |  |
| Input voltage                        | 1730 VDC                                       |  |
| Power/Current consumption            | ≤ 2 mA per channel                             |  |
| Output Circuits                      | relay output                                   |  |
| Contacts                             | 2 change-over contacts, silver-alloy + 3 μm Au |  |
| Switching voltage                    | ≤ 250 V                                        |  |
| Switching current/Continuous current | ≤2 A                                           |  |
| Switching capacity                   | ≤ 500 VA/60 W                                  |  |
| Switching frequency                  | ≤ 10 Hz                                        |  |
| LED Indications                      |                                                |  |
| - Power                              | green                                          |  |
| - Status indication                  | yellow                                         |  |
| Eurocard                             | 100 x 160 mm (DIN 41494)                       |  |
| Material                             | glass-fiber reinforced epoxy resin,            |  |
|                                      |                                                |  |


quality class FR4 plastic, 4TE = 20.32 mm

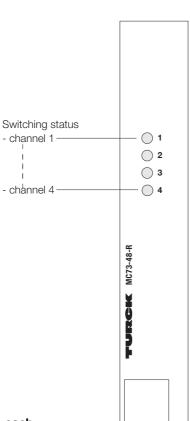
type F, 32-pole

-25...+60 °C

individually interlocking

connector per DIN 41612,



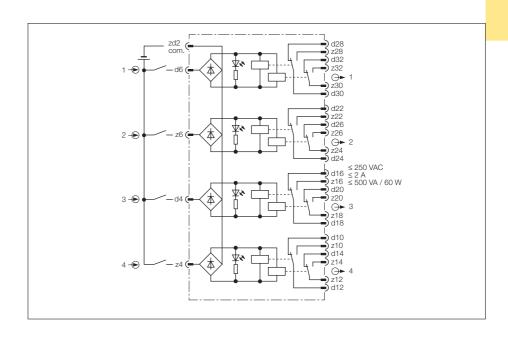

Front panel

Connection

Operating temperature



Relay Card MC73-48-R/24VUC four channels




- Four relay outputs, each with two change-over contacts
- Isolation as per VDE 0106 between control and output circuit
- Relay as per VDE 0435
- Non-polarised control circuits

The MC73-48-R is a 4 channel relay card which provides isolation between output contacts and input circuits (8 mm/4 kV).

A carefully arranged layout of the printed circuit board ensures maximum clearances and creepage distances. A bridge rectifier connected to the relay coils allows the card to operate with either pnp (current sinking), npn (current sourcing) or AC input devices.

The use of silver-alloy and 3 µm Au contacts enables the cards to be used for large loads as well as general control tasks.

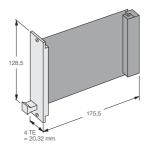




### Relay Card MC73-48-R/24VUC

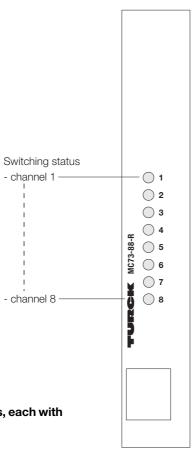
| Туре                                 | MC73-48-R/24VUC         |  |
|--------------------------------------|-------------------------|--|
| ldent-no.                            | 90790                   |  |
| Clearances and Creepage Distances    |                         |  |
| between control circuit and contacts | 8 mm/4 kV               |  |
| Supply Voltage U <sub>B</sub>        |                         |  |
| Ripple W <sub>PP</sub>               | -                       |  |
| Power/Current consumption            | -                       |  |
| Input Circuits                       |                         |  |
| Input voltage                        | 20.427.6 VUC            |  |
| Power/current consumption            | ≤ 30 mA per channel     |  |
| Output Circuits                      | relay output            |  |
| Contacts                             | 2 change-over contacts, |  |
|                                      |                         |  |

Switching voltage silver-alloy + 3  $\mu$ m Au Switching voltage  $\leq$  250 V Switching current /continuous current  $\leq$  2 A


Switching capacity  $\leq 500 \text{ VA/60 W}$ Switching frequency  $\leq 10 \text{ Hz}$ 

LED IndicationsPowerStatus indicationyellow

**Eurocard** 100 x 160 mm (DIN 41494)
Material glass-fiber reinforced epoxy resin,


quality class FR4
Front panel plastic, 4TE = 20.32 mm individually interlocking
Connection connector per DIN 41612,

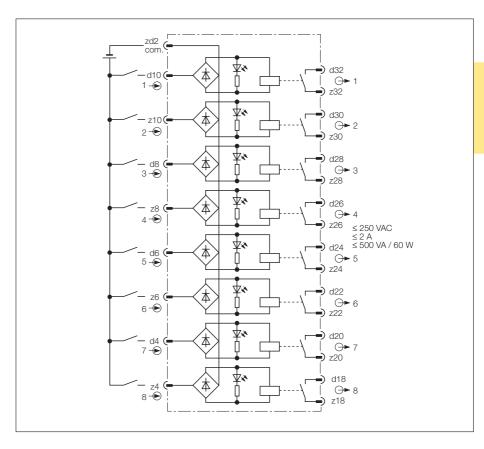
 $\begin{tabular}{ll} type F, 32-pole \\ Operating temperature & -25...+60 \ ^{\circ}C \end{tabular}$ 





## Relay Card MC73-88-R/24VUC eight channels




- Eight relay outputs, each with one N.O. contact
- Isolation of input circuits from output circuits as per VDE 0106
- With bridge rectifier input
- Relay as per VDE 0435
- 8 mm clearances and creepage distances between contacts and input circuit
- Printed circuit boards and connectors as per VDE 0110
- Sealed relays with hard gold-plated contacts

The MC73-88-R is an 8 channel relay card that provides isolation between the contact and input circuit (8 mm/4 kV).

Eight N.O. contacts on the outputs can switch 250 V/2 A each.

A carefully arranged layout of the printed circuit board ensures maximum clearances and creepage distances. A bridge rectifier is wired to the relay coils so the cards can work with either pnp (current sourcing), npn (current sinking) or with AC input devices. As contact material silver-alloy + 3 µm Au is used.

Eight LEDs located on the front cover indicate the status of the respective output relav.





### Relay Card MC73-88-R/24VUC

Туре MC73-88-R/24VUC

Ident-no. 90792

Clearances and Creepage Distances

between control circuit and contacts 8 mm/4 kV

**Input Circuits** 

Input voltage 20.4...27.6 VUC Power/Current consumption ≤ 30 mA per channel

**Output Circuits** relay output

Contacts 1 N.O. contact, silver-alloy + 3 µm Au

Switching voltage ≤ 250 V Switching current/continuous current  $\leq$  2 A

≤ 500 VA/60 W Switching capacity Switching frequency ≤ 10 Hz

**LED Indications** 

Connection

Operating temperature

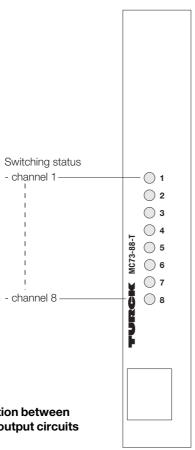
Status indication yellow

**Eurocard** 100 x 160 mm (DIN 41494)

Material glass-fiber reinforced epoxy resin,

quality class FR4

Front panel plastic, 4TE = 20.32 mm


individually interlocking

type F, 32-pole -25...+60 °C

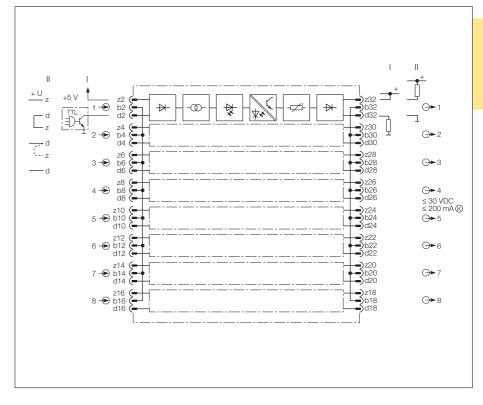




# Optocoupler Card with Electronic Output MC73-88-T/24VDC eight channels



- Full galvanic isolation between input circuits and output circuits
- Up to 5 kHz switching frequency
- · High switching reliability
- Low input power
- Wide input voltage range
- Non-polarised input and output circuits
- Short-circuit and overload protected output circuits
- Low power load signal amplification
- Galvanically isolated input signals for different signal levels
- · Adaptation of different signal levels
- For switching and amplification of control circuits
- Complementary input signal


The MC73-88-T relay card provides 8 channels with electronic output circuits for applications where conventional relay cards cannot be used reliably due to their specific contact limitations.

The card is specifically suitable for applications involving:

- high switching frequencies
- low input currents
- minimal load currents

The non-polarised input circuits provide constant current characteristics. This allows a wide range of input voltages for control operations. The output stages are also non-polarised and have short-circuit protection. Yellow LEDs located on the front cover indicate the output status.

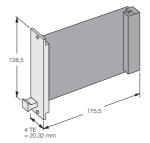
The cards are connected via a 32-pole or 48-pole edge connector (type F – DIN 41612). The 48-pole edge connector provides a centre row with grounding terminals mounted on busbars, one for connection of the input and one for the output.



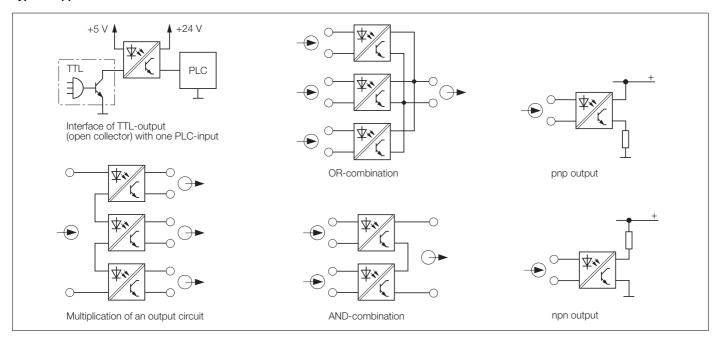


### Optocoupler Card with Electronic Output MC73-88-T/24VDC

| Туре                                  | MC73-88-T/24VDC                                       |                                                  |
|---------------------------------------|-------------------------------------------------------|--------------------------------------------------|
| Ident-no.                             | 90802                                                 |                                                  |
| Galvanic Isolation                    | input circuits and output circuits                    |                                                  |
|                                       | from and to each other                                |                                                  |
| Input Circuits                        | non polarised                                         | Considering the internal voltage drop up to 4    |
| Input voltage                         | 530 VDC                                               | channels can be connected in series.             |
| Input current                         | ≤ 10 mA (typically 8.5 mA)                            |                                                  |
| Minimum input pulse                   | ≥ 50 µs                                               |                                                  |
| Minimum off-time                      | ≥ 100 µs                                              |                                                  |
| Output Circuits                       | transistor isolating transformer, short-circuit prot. | The short-circuit protection characteristics     |
| Switching voltage                     | ≤ 30 VDC                                              | allow inductive and capacitive loads as well as  |
| Switching current                     | ≤ 200 mA                                              | light bulbs to be directly connected to the out- |
| Voltage drop                          | ≤ 3 VDC (50 mA)                                       | put circuits. Interconnection of the output cir- |
|                                       | ≤ 4.2 VDC (200 mA)                                    | cuits poses no problems. For series connection   |
| Leakage current                       | ≤ 50 µA                                               | of several output circuits, the sum of all       |
| Switching frequency                   | 5 kHz                                                 | voltage drops must be considered.                |
| Pulse rise time ton                   | 10 μs                                                 |                                                  |
| Pulse release time toff               | 50 µs                                                 |                                                  |
| LED Indications                       |                                                       |                                                  |
| <ul> <li>Status indication</li> </ul> | vellow                                                |                                                  |

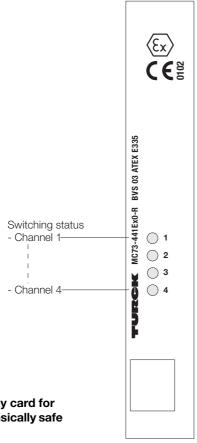

- Status indication yellow

**Eurocard** 100 x 160 mm (DIN 41494) Material glass-fiber reinforced epoxy resin,


quality class FR4 Front panel plastic, 4TE = 20.32 m individually interlocking Connection connector per DIN 41612,

type F, 32-pole (series z + d) or 48-pole

-25...+60 °C Operating temperature




### **Typical Applications**





### Relay Cards MC73-441Ex0-R/24VDC MC73-442Ex0-R/24VDC four channels



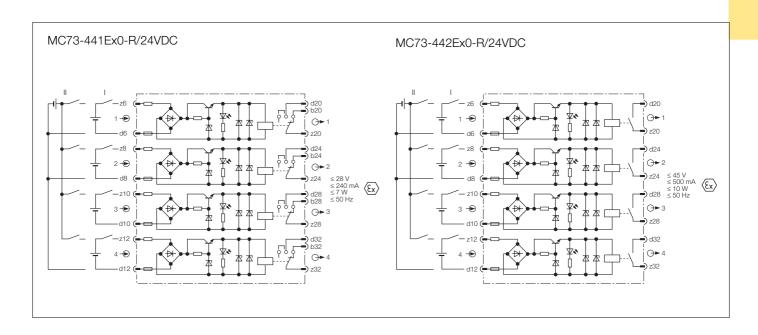
 Four-channel relay card for switching of intrinsically safe current circuits

- Galvanic isolation of input and output circuits according to EN 50020
- Printed circuit boards and connectors according to VDE 0110
- High quality Reed relays with

The 4 channel relay cards MC73-441Ex0-R and MC73-442Ex0-R are used to switch

intrinsically safe current circuits. They provide isolation between output and control circuit (per EN 50020).

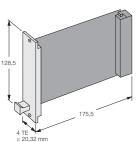
Four LEDs in the front of the device indicate the status of the respective output relay.




The relay cards are available with the following output configurations:

- MC73-441Ex0-R: four relays with one change-over contact
- MC73-442Ex0-R: four relays with one N.O. contact

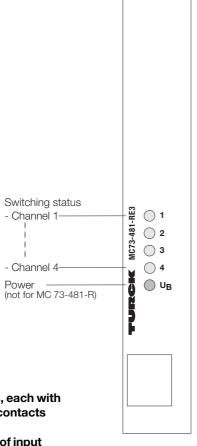
At 50 Hz, the switching frequency of the Reed relay is considerably higher than that of standard relays.


The Reed relay with rhodium contacts can be used for applications where conventional relay cards cannot be used due to their contact limitations.





### Relay Cards MC73-441Ex0-R/MC73-442Ex0-R


| Туре                                        | MC73-441Ex0-R/24VDC                            | MC73-442Ex0-R/24VDC                            |  |
|---------------------------------------------|------------------------------------------------|------------------------------------------------|--|
| ldent-no.                                   | 9077006                                        | 9077007                                        |  |
| Galvanic Isolation                          | galvanic isolation according to EN 50020;      | galvanic isolation according to EN 50020;      |  |
| - between control circuit and contacts      | ≤ 375 V peak value                             | ≤ 375 V peak value                             |  |
| - between two contact circuits              | ≤ 90 V peak value                              | ≤ 90 V peak value                              |  |
| Input Circuits                              |                                                |                                                |  |
| Input voltage                               | 1030 VDC                                       | 1030 VDC                                       |  |
| Current consumption                         | ≤ 20 mA per channel                            | ≤ 20 mA per channel                            |  |
| Secure switch-off voltage                   | < 3 V                                          | < 3 V                                          |  |
| Output Circuits                             | Reed relay output for switching of             | Reed relay output for switching of             |  |
|                                             | intrinsically safe current circuits EEx ia IIC | intrinsically safe current circuits EEx ia IIC |  |
| Contact material                            | rhodium                                        | rhodium                                        |  |
| Number of contacts                          | 1 change-over contact                          | 1 N.O. contact                                 |  |
| Switiching voltage                          | ≤ 28 V                                         | ≤ 45 V                                         |  |
| Switching current/continuous current        | ≤ 240 mA                                       | ≤ 500 mA                                       |  |
| Switching capacity                          | ≤ 7 W                                          | ≤ 10 W                                         |  |
| Switching frequency                         | ≤ 50 Hz                                        | ≤ 50 Hz                                        |  |
| Ex-Approvals acc. to Certification of Confo | rmity BVS 03 ATEX E335                         | BVS 03 ATEX E335                               |  |
| – Li, Ci                                    | negligible                                     | negligible                                     |  |
| LED Indications                             |                                                |                                                |  |
| <ul> <li>Status indication</li> </ul>       | yellow                                         | yellow                                         |  |
| Eurocard                                    | 100 x 160 mm (DIN 41494)                       | 100 x 160 mm (DIN 41494)                       |  |
| Material                                    | glass-fiber reinforced epoxy resin,            | glass-fiber reinforced epoxy resin,            |  |
|                                             | quality class FR4                              | quality class FR4                              |  |
| Front panel                                 | plastic, 4TE = 20.32 mm                        | plastic, 4TE = 20.32 mm                        |  |
|                                             | individually interlocking                      | individually interlocking                      |  |
| Connection                                  | connector per DIN 41612,                       | connector per DIN 41612,                       |  |
|                                             | type F, 48-pole                                | type F, 32-pole                                |  |
| Operating temperature                       | -25+60 °C                                      | -25+60 °C                                      |  |
| Coding                                      | No. 104                                        | No. 103                                        |  |
|                                             | d                                              | d                                              |  |



2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32



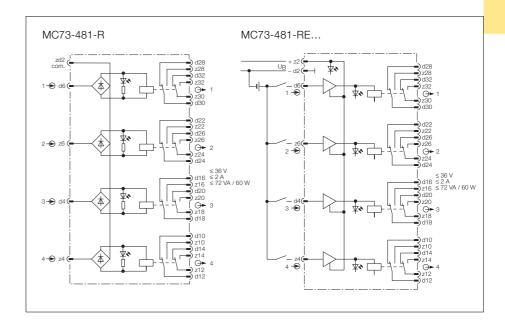
Relay Cards MC73-481-R/24VUC MC73-481-RE.../24VDC four channels



- Four relay outputs, each with two change-over contacts
- Galvanic isolation of input and output circuits
- For low switching frequencies
- Safe contact switching also for low level signal input
- Bridge rectifier or input signal amplifier
- Relay according to VDE 0435

The 4 channel relay card MC73-481-R can be used to switch loads located in low voltage environments. The relays

are gas tight. The use of silver cadmium oxide with hard gold-plated contacts makes the card suitable for low level switching.


The MC73-48-R is available for the switching of power supplies.

A bridge rectifier connected to the relay coils allows the card to operate with either pnp (current sinking) or npn (current sourcing), or AC input devices.

The relay cards are also available with input signal amplifier (type: MC73-481-RE...). This makes them suitable for low power input signal processing.

At a typical current consumption of 2 mA, the input voltage ranges for these relays are:

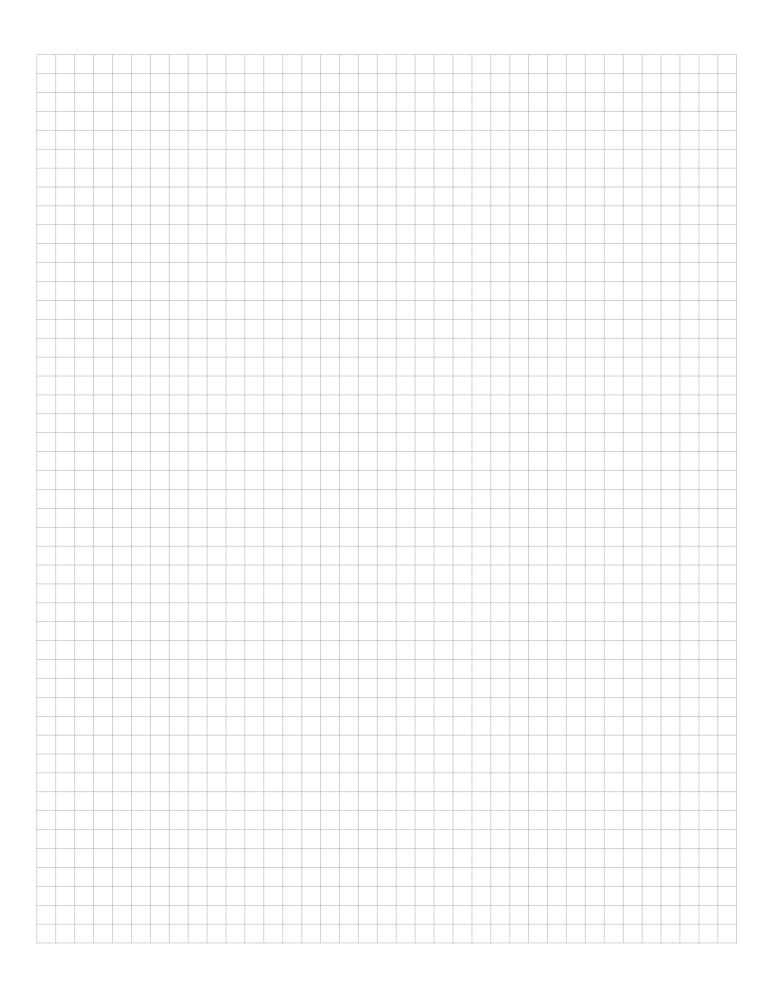
- 3...8 VDC (MC73-481-RE1)
- 7...18 VDC (MC73-481-RE2)
- 17...30 VDC (MC73-481-RE3).





### Relay Cards MC73-481-R/24VUC/MC73-481-RE.../24VDC

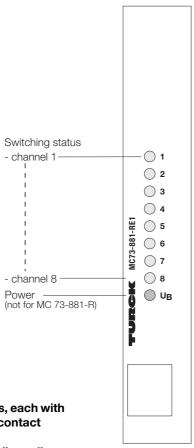
| ldent-no.                             | 9079440                                        | 9079453                                        |
|---------------------------------------|------------------------------------------------|------------------------------------------------|
|                                       |                                                | 301 3430                                       |
| Clearances and Creepage Distances     |                                                |                                                |
| between control circuit and contacts  | 4 mm/1 kV                                      | 4 mm/1 kV                                      |
| Supply Voltage $\cup_{\mathbb{B}}$    | _                                              | 20.427.6 VDC                                   |
| Ripple W <sub>PP</sub>                | _                                              | ≤ 10 %                                         |
| Current consumption                   | -                                              | ≤ 80 mA                                        |
| Input Circuits                        |                                                |                                                |
| Input voltage                         | 20.427.6 VUC                                   | 38 VDC                                         |
| Current consumption                   | ≤ 20 mA per channel                            | ≤ 2 mA per channel                             |
| Output Circuits                       | relay output                                   | relay output                                   |
| Contacts                              | 2 change-over contacts, silver-alloy + 3 µm Au | 2 change-over contacts, silver-alloy + 3 µm Au |
| Switching voltage                     | ≤ 36 V                                         | ≤ 36 V                                         |
| Switching current/continuous current  | ≤ 2 A                                          | ≤ 2 A                                          |
| Switching capacity                    | ≤ 72 VA/60 W                                   | ≤ 72 VA/60 W                                   |
| Switching frequency                   | ≤ 10 Hz                                        | ≤ 10 Hz                                        |
| Minimum load                          | 0.05 mA at 50 mVDC                             | 0.05 mA at 50 mVDC                             |
| LED Indications                       |                                                |                                                |
| – Power                               | _                                              | green                                          |
| <ul> <li>Status indication</li> </ul> | yellow                                         | yellow                                         |
| Eurocard                              | 100 x 160 mm (DIN 41494)                       |                                                |
| Material                              | glass-fiber reinforced epoxy resin,            |                                                |
|                                       | quality class FR4                              |                                                |
| Front panel                           | plastic, 4TE = 20.32 mm                        |                                                |
|                                       | individually interlocking                      | 128,5                                          |
| Connection                            | connector per DIN 41612,                       |                                                |
|                                       | type F, 32-pole                                |                                                |
| Operating temperature                 | -25+60 °C                                      |                                                |
|                                       |                                                | 175,5                                          |
|                                       |                                                | 4 TE = 20,32 mm                                |




## Relay Cards MC73-481-RE...

| ndustri <mark>al</mark><br>Automation |
|---------------------------------------|
|---------------------------------------|

| Туре                                 | MC73-481-RE2/24VDC                                    | MC73-481-RE3/24VDC                             |  |
|--------------------------------------|-------------------------------------------------------|------------------------------------------------|--|
| Ident-no.                            | 9079452                                               | 9079450                                        |  |
| Clearances and Creepage Distances    |                                                       |                                                |  |
| between control circuit and contacts | 4 mm/1 kV                                             | 4 mm/1 kV                                      |  |
| Supply Voltage $U_B$                 | 20.427.6 VDC                                          | 20.427.6 VDC                                   |  |
| Ripple W <sub>PP</sub>               | ≤ 10 %                                                | ≤ 10 %                                         |  |
| Current consumption                  | ≤ 80 mA                                               | ≤ 80 mA                                        |  |
| Input Circuits                       |                                                       |                                                |  |
| Input voltage                        | 718 VDC                                               | 1730 VDC                                       |  |
| Current consumption                  | ≤ 2 mA per channel                                    | ≤ 2 mA per channel                             |  |
| Output Circuits                      | relay output                                          | relay output                                   |  |
| Contacts                             | 2 change-over contacts, silver-alloy + 3 µm Au        | 2 change-over contacts, silver-alloy + 3 µm Au |  |
| Switching voltage                    | ≤ 36 V                                                | ≤ 36 V                                         |  |
| Switching current/continuous current | ≤ 2 A                                                 | ≤ 2 A                                          |  |
| Switching capacity                   | ≤ 72 VA/60 W                                          | ≤ 72 VA/60 W                                   |  |
| Switching frequency                  | ≤ 10 Hz                                               | ≤ 10 Hz                                        |  |
| Minimum load                         | 0.05 mA at 50 mVDC                                    | 0.05 mA at 50 mVDC                             |  |
| LED Indications                      |                                                       |                                                |  |
| - Power                              | green                                                 | green                                          |  |
| - Status indication                  | yellow                                                | yellow                                         |  |
| Eurocard                             | 100 x 160 mm (DIN 41494)                              |                                                |  |
| Material                             | glass-fiber reinforced epoxy resin, quality class FR4 |                                                |  |
| Front panel                          | plastic, 4TE = 20.32 mm<br>individually interlocking  | 128.5                                          |  |
| Connection                           | connector per DIN 41612,<br>type F, 32-pole           |                                                |  |
| Operating temperature                | -25+60 °C                                             | 175,5                                          |  |
|                                      |                                                       | 4 TE<br>= 20,32 mm                             |  |



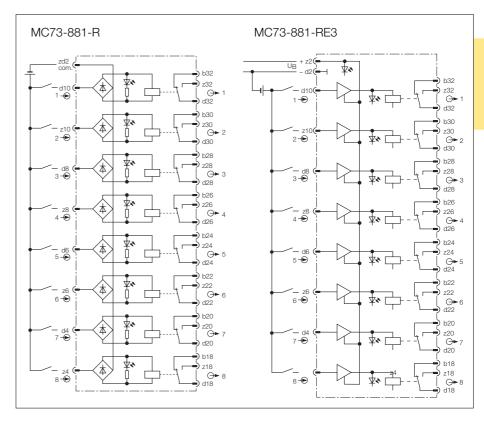





Industri<mark>al</mark> Au<mark>tomation</mark>

### Relay Cards MC73-881-R/24VUC MC73-881-RE3/24VDC four channels

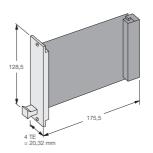



- Eight relay outputs, each with one change-over contact
- Contact material silver-alloy + 3 μm Au
- Reliable isolation of input circuits from output circuits per VDE 0106
- Bridge rectifier or amplifier input
- Relay according to VDE 0435
- Printed circuit boards and connectors according to VDE 0110
- 8 mm clearances and creepage distances between control circuit and contacts

The 8 channel MC73-881-R relay provides isolation between contact and control circuits (8 mm/4 kV).

A carefully arranged layout of the printed circuit board ensures maximum clearances and creepage distances. A bridge rectifier is wired to the relay coils so the card can work with either pnp (current sourcing), npn (current sinking) or with AC input devices.

8 LEDs located on the front panel indicate the status of the respective output relay.

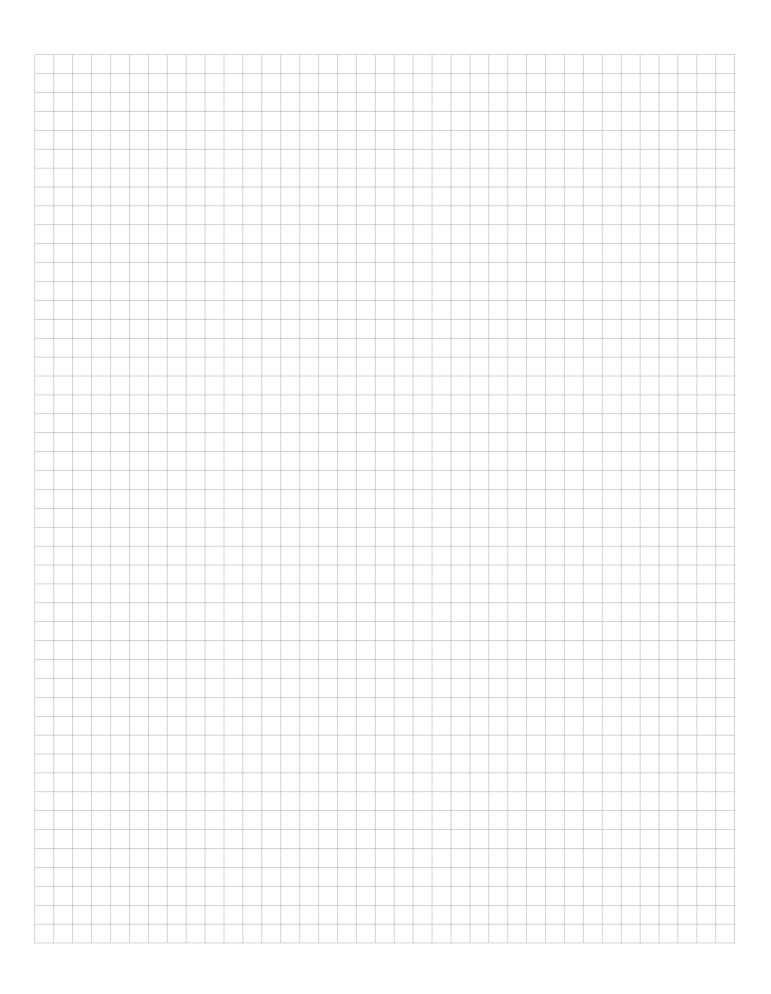

The relay cards are also available with input signal amplifiers for low power input signal processing (type MC73-881-RE...). At a typical current consumption of 2 mA, the input voltage range for these relays is 17...30 VDC.

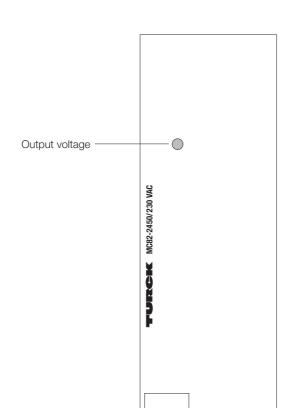




### Relay Cards MC73-881-R/24VUC/MC73-881-RE3/24VDC

| Clearances and Creepage Distances between control circuit and contacts  8 mm/4 kV  Supply Voltage U <sub>B</sub> Ripple W <sub>PP</sub> Current consumption  - | 8 mm/4 kV<br>1835 VDC<br>≤ 10 %<br>≤ 200 mA              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
|                                                                                                                                                                | 1835 VDC<br>≤ 10 %                                       |  |
| Ripple W <sub>PP</sub> –                                                                                                                                       | ≤ 10 %                                                   |  |
|                                                                                                                                                                |                                                          |  |
| Current consumption –                                                                                                                                          | ≤ 200 mA                                                 |  |
|                                                                                                                                                                |                                                          |  |
| Input Circuits                                                                                                                                                 |                                                          |  |
| Input voltage 20.427.6 VUC                                                                                                                                     | 1730 VDC                                                 |  |
| Current consumption ≤ 25 mA per channel                                                                                                                        | ≤ 2 mA per channel                                       |  |
| Output Circuits relay output                                                                                                                                   | relay output                                             |  |
| Contacts 1 change-over contact, silver-alloy + 3 µm Au                                                                                                         | 1 change-over contact, silver-alloy + 3 µm Au            |  |
| Switching voltage ≤ 36 V                                                                                                                                       | ≤ 36 V                                                   |  |
| Switching current/continuous current ≤ 2 A                                                                                                                     | ≤ 2 A                                                    |  |
| Switching capacity ≤ 72 VA/60 W                                                                                                                                | ≤ 72 VA/72 W                                             |  |
| Switching frequency ≤ 10 Hz                                                                                                                                    | ≤ 10 Hz                                                  |  |
| LED Indications                                                                                                                                                |                                                          |  |
| - Power -                                                                                                                                                      | green                                                    |  |
| - Status indication yellow                                                                                                                                     | yellow                                                   |  |
| <b>Eurocard</b> 100 x 160 mm (DIN 41494)                                                                                                                       | 100 x 160 mm (DIN 41494)                                 |  |
| Material glass-fiber reinforced epoxy resin, quality class FR4                                                                                                 | glass-fiber reinforced epoxy resin,<br>quality class FR4 |  |
| Front panel plastic, 4TE = 20.32 mm individually interlocking                                                                                                  | plastic, 4TE = 20.32 mm<br>individually interlocking     |  |
| Connection connector per DIN 41612, type F, 48-pole                                                                                                            | connector per DIN 41612,<br>type F, 48-pole              |  |
| Operating temperature -25+60 °C                                                                                                                                | -25+60 °C                                                |  |




## POWER SUPPLIES/ FUSE CARDS











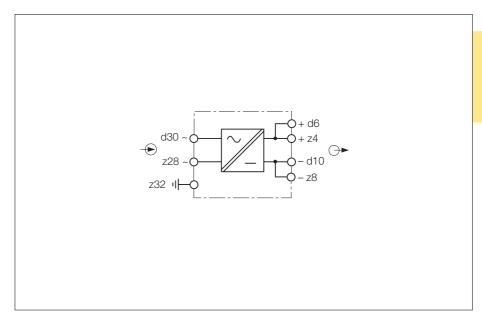
### Power Supplies MC82-2425/230VAC MC82-2450/230VAC

 Two versions for different output currents

- Short-circuit and overload protected
- Selectable primary voltages 100...127 VAC/ 220...240 VAC
- Output voltage indication via LED
- Ideal extension of the multicart® product range

The current supplies, type MC82-24... are designed for the supply of DC loads, especially for supply of switching and monitoring devices of the *multicart*® series.

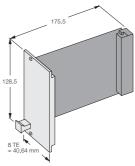
There are two versions with different output specifications:


- 24 VDC/2.5 A/60 W (MC82-2425)
- 24 VDC/5.0 A/120 W (MC82-2450)

The outputs are short-circuit and overload protected.

By connecting several MC82... power supplies of the same type in parallel, it is possible to increase the system's power capacity. In this case, the power is automatically distributed symmetrically.

The devices withstand interferences as set forth in IEC 1000-4 (IEC 801) and VDE 0160 class 2, even under full load conditions. Construction and design accord to EN 60950, VDE 0805 and VBG 4.


If the green output voltage LED illuminates, the load supply of > 20.4 V is assured.





### Power Supplies MC82-2425/MC82-2450

| Туре                                                               | MC82-2425/230VAC                                              | MC82-2450/230VAC                                            |
|--------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|
| ldent-no.                                                          | 9087210                                                       | 9087220                                                     |
| Galvanic isolation                                                 | according to EN 60950, VDE 0805                               | according to EN 60950, VDE 0805                             |
| Load rating                                                        | 2.5 A (T <sub>u</sub> ≤ 55 °C)                                | 5.0 A (T <sub>u</sub> ≤ 55 °C)                              |
| Derating                                                           | 1 W/K from +55 $^{\circ}$ C up to +70 $^{\circ}$ C            | 1 W/K from +55 °C up to +70 °C                              |
| Supply voltage $U_{B}$                                             | 100127 VAC/220240 VAC selectable                              | 100127 VAC/220240 VAC selectable                            |
| Line frequency                                                     | 4763 Hz                                                       | 4763 Hz                                                     |
| Current consumption                                                | max. 1.3 $A_{\text{eff}}/0.7$ $A_{\text{eff}}$ at 115/230 VAC | max. 3 $A_{\text{eff}}/1.4$ $A_{\text{eff}}$ at 115/230 VAC |
| Output voltage                                                     | 24 VDC ± 2 %                                                  | 24 VDC ± 2 %                                                |
| Start-up delay                                                     | typ. 5 ms                                                     | typ. 5 ms                                                   |
| Ripple W <sub>pp</sub>                                             | $\leq$ 30 mV <sub>pp</sub> (20 Hz200 kHz)                     | $\leq$ 30 mV <sub>pp</sub> (20 Hz200 kHz)                   |
| LED indications                                                    |                                                               |                                                             |
| <ul> <li>output voltage</li> </ul>                                 | green                                                         | green                                                       |
| Eurocard                                                           | 100 x 160 mm (DIN 41494)                                      | 100 x 160 mm (DIN 41494)                                    |
| Material                                                           | glass-fibre reinforced epoxy resin                            | glass-fibre reinforced epoxy resin                          |
|                                                                    | quality class FR4                                             | quality class FR4                                           |
| Front panel                                                        | plastic, 8 TE = 40.64 mm                                      | plastic, 8 TE = 40.64 mm                                    |
| •                                                                  | for individual interlocking                                   | for individual interlocking                                 |
| Connection                                                         | connectors as per DIN 41612,                                  | connectors as per DIN 41612,                                |
|                                                                    | type H15, 15-pole (series z+d)                                | type H15, 15-pole (series z+d)                              |
|                                                                    |                                                               |                                                             |
|                                                                    | (included in delivery)                                        | (included in delivery)                                      |
| Ultilisation category                                              | (included in delivery)<br>KSF (DIN 40040)                     | (included in delivery)<br>KSF (DIN 40040)                   |
| 0 ,                                                                | ,                                                             | *                                                           |
| Ultilisation category<br>Pollution degree<br>Operating temperature | KSF (DIN 40040)                                               | KSF (DIN 40040)                                             |





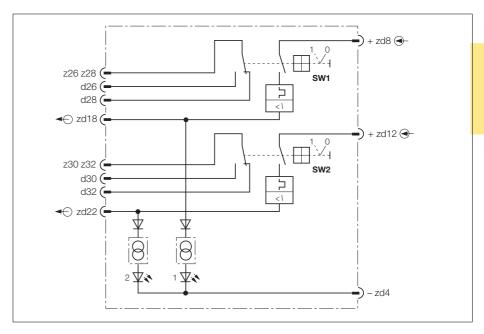
# Circuit-Breaker Card MC83-2SA... two channels

- Protection of two circuits with common or separate input
- Primary protection up to 250 VAC/5 A or secondary protection up to 28 VDC/5 A
- Fault indication via alarm contacts (change-over) and LED indication
- Current rating up to 2 x 5 A

The circuit-breaker card MC83-2SA is equipped with two thermally activated circuit-breakers. Two circuits with common or separate input and a common earth can be connected.

The unit is suitable for protection up to 250 VAC/5 A (primary side) and 28 VDC/5 A (secondary side). Combined operation of primary and secondary side is **not permissible**.

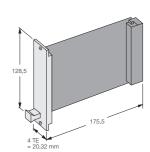
The tripping of a circuit-breaker will be monitored and fed to the output terminals (one change-over contact output per channel).


Two green LEDs on the front panel of the card indicate when voltage is applied and fed to the output terminals.

A toggle switch is provided for manual interruption of the circuits.

The fuse monitor has options for nominal currents of 0.1...5 A (as indicated in the suffix of the type designation). Standard types are:

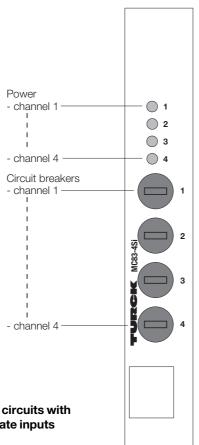
MC83-2SA/1A for 1 AMC83-2SA/2A for 2 AMC83-2SA/4A for 4 A


Other versions available upon request.





### Circuit-Breaker Card MC83-2SA...


| Type (Standard types) | MC83-2SA/1A                         | MC83-2SA/2A                         | MC83-2SA/4A                         |
|-----------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Ident-no.             | 9089010                             | 9089020                             | 9089040                             |
| Circuit breakers      |                                     |                                     |                                     |
| Nominal current       | 1 A                                 | 2 A                                 | 4 A                                 |
| Voltage               | ≤ 250 VAC/≤ 28 VDC                  | ≤ 250 VAC/≤ 28 VDC                  | ≤ 250 VAC/≤ 28 VDC                  |
| Alarm circuits        | 1 change-over contact/channel       | 1 change-over contact/channel       | 1 change-over contact/channel       |
| Switching voltage     | ≤ 250 VAC/≤ 36 VDC                  | ≤ 250 VAC/≤ 36 VDC                  | ≤ 250 VAC/≤ 36 VDC                  |
| Switching current     | ≤ 1 A                               | ≤ 1 A                               | ≤ 1 A                               |
| LED indications       |                                     |                                     |                                     |
| - Power               | green (2 x)                         | green (2 x)                         | green (2 x)                         |
| Eurocard              | 100 x 160 mm (DIN 41494)            | 100 x 160 mm (DIN 41494)            | 100 x 160 mm (DIN 41494)            |
| Material              | glass-fiber reinforced epoxy resin, | glass-fiber reinforced epoxy resin, | glass-fiber reinforced epoxy resin, |
|                       | quality class FR4                   | quality class FR4                   | quality class FR4                   |
| Front panel           | plastic, 4TE = 20.32 mm             | plastic, 4TE = 20.32 mm             | plastic, 4TE = 20.32 mm             |
| ·                     | individually interlocking           | individually interlocking           | individually interlocking           |
| Connection            | connector per DIN 41612,            | connector per DIN 41612,            | connector per DIN 41612,            |
|                       | type F, 32-pole (series z+d)        | type F, 32-pole (series z+d)        | type F, 32-pole (series z+d)        |
| Operating temperature | -25+60 °C                           | -25+60 °C                           | -25+60 °C                           |





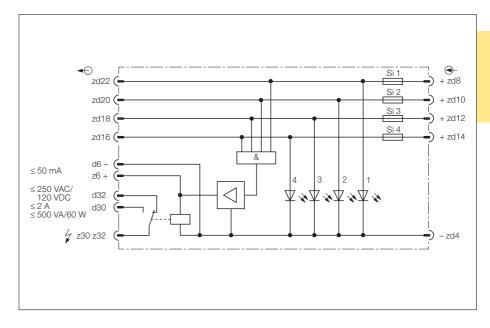
Industri<mark>al</mark> Au<mark>tomation</mark>





- Protection of four circuits with common or separate inputs
- Relay and transistor output for fuse failure indication
- Front panel LED indications
- Current rating 4 x 5 A
- Relay with hard gold-plated contact

The fuse card MC83-4Si is used to protect modules in 19" racks and to identify possible fuse failure conditions.


The card has four channels. It can be used for one single 19" rack holding 21 plug-in terminals divided into four groups of five cards each.

The card will protect four different current circuits having a common potential.

The fuse holders are built into the front panel to allow for fuse replacement without removing the card from the rack.

An alarm message will be given when a fuse blows. This is achieved by using a relay and a pnp transistor output.

A front-cover LED is assigned to each channel. An illuminated LED indicates power "ON". If a fuse is blown, the LED turns off.





### Fuse Card MC83-4Si/24VDC

Туре MC83-4Si/24VDC Ident-No. 90894

**Fuse Circuits** 

19.2...28.8 VDC Voltage Maximum load current ≤ 5 A per channel Fuse glass fuse 5 x 20

**Output Circuits** common alarm

Transistor output pnp, short-circuit protected - Switching voltage voltage in fuse circuit

Switching current ≤ 50 mA

≤ 3 VDC (50 mA) Voltage drop

Relay output

Number of contacts one change-overcontact, silver-alloy + 3 µm Au

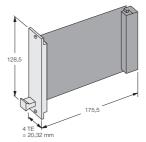
≤ 250 V Switching voltage ≤2 A Swiching current

≤ 500 VA/60 W - Switching capacity

**LED Indications** 

- Power green (4 x)

**Eurocard** 100 x 160 mm (DIN 41494)

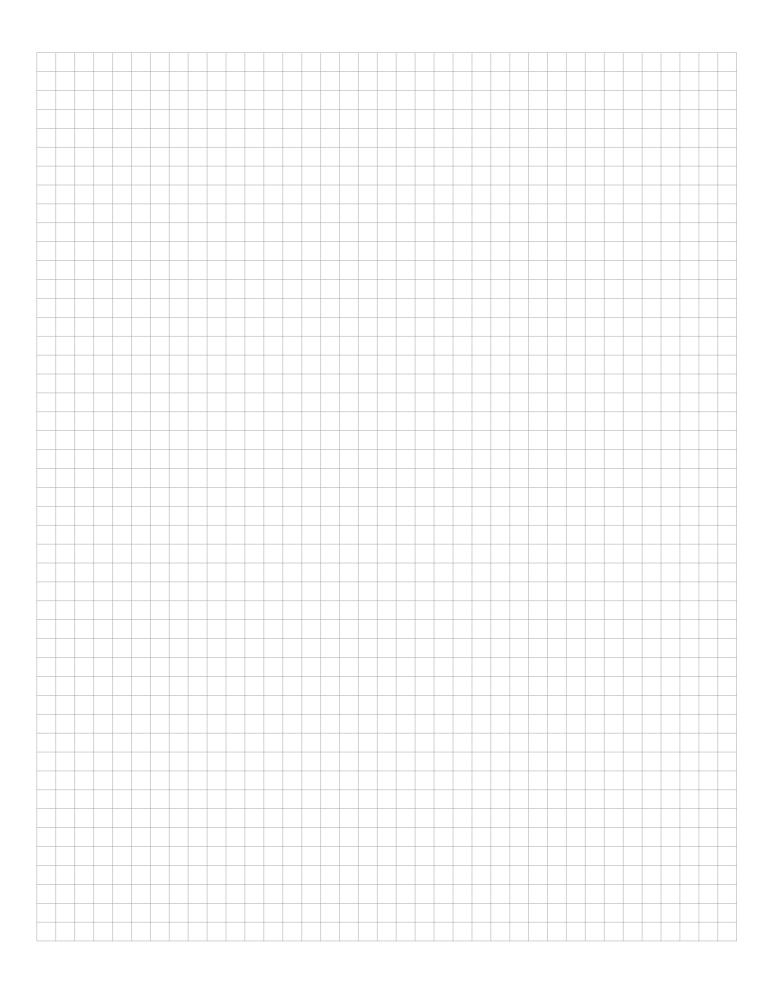

Material glass-fiber reinforced epoxy resin,

quality class FR4

Front panel plastic, 4TE = 20.32 mm individually interlocking

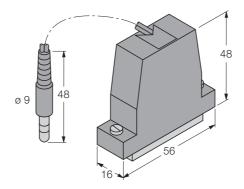
Connection connector per DIN 41612, type F, 32-pole (series z+d)

-25...+60 °C Operating temperature






# ACCESSORIES


|                                                                                            | _               |
|--------------------------------------------------------------------------------------------|-----------------|
| Accessories  Programming Adapter for  PACTware™ Parameterisation  of TURCK Devices IM-PROG | <b>Pag</b> (8-3 |
| Interface Module<br>MC-IM-232                                                              | 8-5             |
| PACTware ™<br>DTM Professional License                                                     | 8-7             |
| 19" Card Rack MCE 21                                                                       | 8-10            |
| Edge Connector 48 FL/Isolation body 48 FC                                                  | 8-11            |
| Edge Connectors 48 FW/48 FT/48FS                                                           | 8-12            |
| LMIDIN-F32ZD-SFL32-2,5LMI                                                                  | 8-13            |
| LS Coding Pins                                                                             | 8-13            |
| Crimping Tool                                                                              | 8-13            |
| Guide Rail/Guide Rail Assembly                                                             | 8-14            |
| Aluminium Cover/Bus Connections/<br>Isolator Card 4 TE                                     | 8-15            |
| multicart® Modular Housing                                                                 | 8-17            |
| Type index                                                                                 | 8-20            |
|                                                                                            |                 |









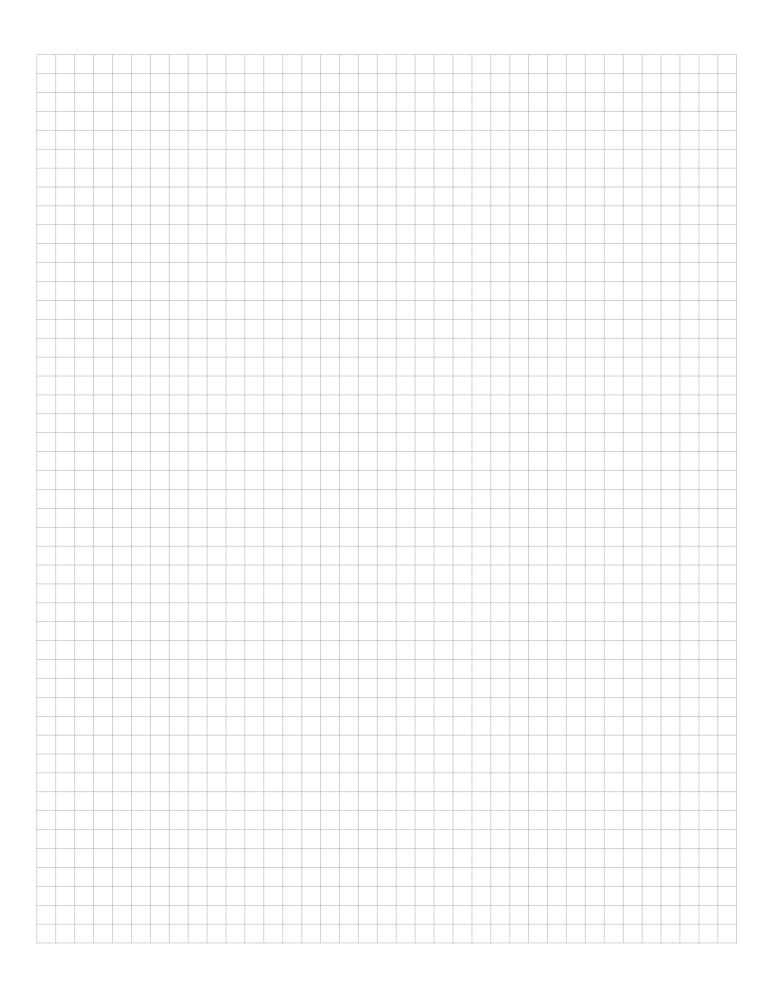


# IM-PROG Programming Adapter for Parameterisation of TURCK Devices via FDT

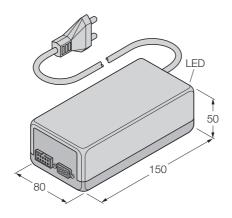
- Adapter for parameterisation of TURCK devices via the serial PC interface and FDT
- FDT frame application PACTware<sup>™</sup> is downloadable free of charge from www. TURCK.com
- Galvanically isolated signal transmission

The IM-PROG adapter is used for FDT parameterisation of TURCK devices with FDT compatibility via the serial interface of a PC.

The interface device to be parameterised is connected to the serial interface of the PC via the IM-PROG adapter using the included connection cable.


The interface device must be connected to the voltage supply for parameterisation.

The IM-PROG converts the signal level and implements galvanic isolation between PC and interface device.


Additionally, the parameters may be stored in the computer or printed on a connected printer.

| Туре               | IM-PROG                        |
|--------------------|--------------------------------|
| Ident-no.          | 6890422                        |
| Connection         |                                |
| - interfacemodul   | 3.5 mm jack                    |
| - PC               | 25-pole RS232 interface        |
|                    | or via supplied adapter on the |
|                    | 9-pole RS232 interface         |
| Cable length       | 1.0 m                          |
| Galvanic isolation | 60 V                           |









## Interface module MC-IM-232

- Signal level converter for the connection of TURCK processor cards to the serial interface of a PC
- Built-in power supply for connected cards
- With DOS programming disk for card parameter programming
- Not suited for PACTware™ devices

For parameter programming via PC, the MC-IM-232 interface module is required. The interface module performs an interface function between TURCK processor cards and the serial inter-face of a PC.

The MC-IM-232 interface module connects the card to the interface of the PC via the connection cable provided with the module.

The interface module has an integrated 230 VAC power supply. It is not permitted to use an auxiliary power supply with the card.

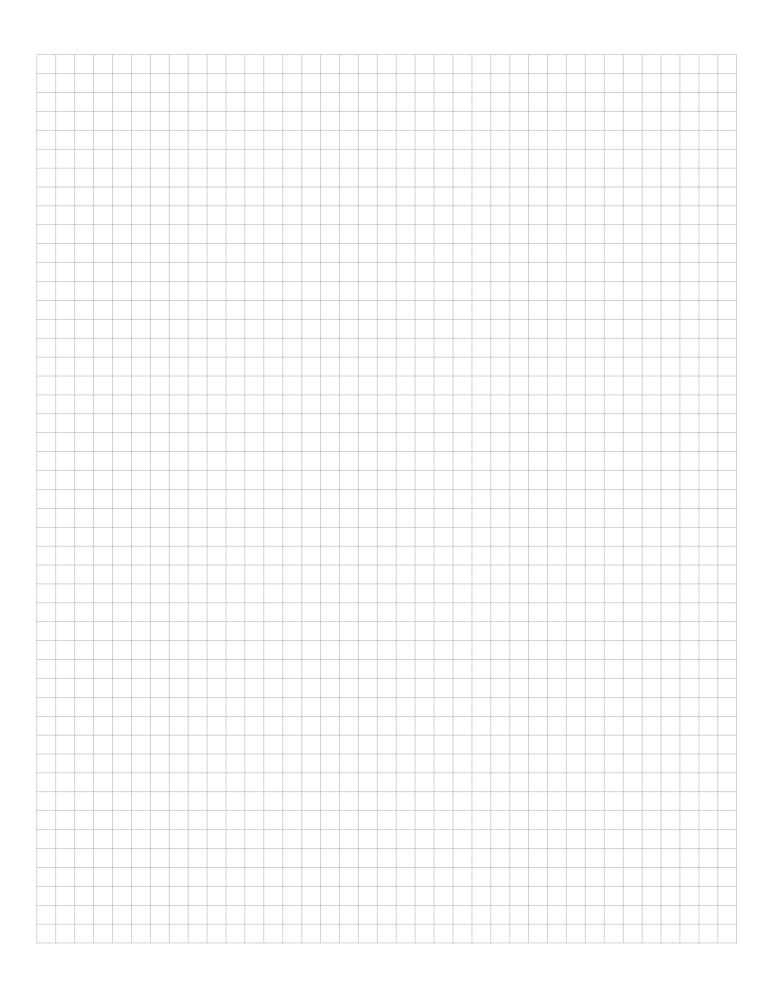
The interface module converts signals from the RS232 card interface into PC signals.

The parameter setting software for the processor card (except for cards with

PACTware™ parameterisation) is included. All card parameters can be stored in the PC and printed on a connected printer.

#### **ESC Lockout on the Front Panel**

The left toggle switch on the front panel (ESC) can be controlled by PC to inhibit parameter adjustments during operation. The ESC function can only be enabled via PC.


The parameter scan during system operation ist not affected by the ESC lockout.

connection cables (included)

| Туре               | MC-IM-232<br>9909602                       |  |
|--------------------|--------------------------------------------|--|
| Ident-no.          |                                            |  |
| Supply voltage     | 196253 VAC                                 |  |
| Line frequency     | 4862 Hz                                    |  |
| Galvanic isolation | between input circuits, output circuits    |  |
|                    | and supply voltage for 250 $V_{rms}$ ,     |  |
|                    | test voltage 2.5 kV <sub>rms</sub>         |  |
| Interface          |                                            |  |
| To card            | RS232serial/V.24 with + 5 V signal levels  |  |
| To PC              | RS232serial/V.24 with ± 12 V signal levels |  |
| Compact housing    | 150 x 50 x 80 mm (l x w x h)               |  |

Connection







Automation



### PACTware ™ DTM Professional License



- License key for activation of special functions:
  - Monitoring function
  - Print function
  - Trend viewer
  - Storage function

PACTware™ stands for "Process Automation Configuration Tool" and is an opensource configuration software via which any manufacturer can operate his field devices. Optimisation of device operation is the key objective of the PACTware™ concept.

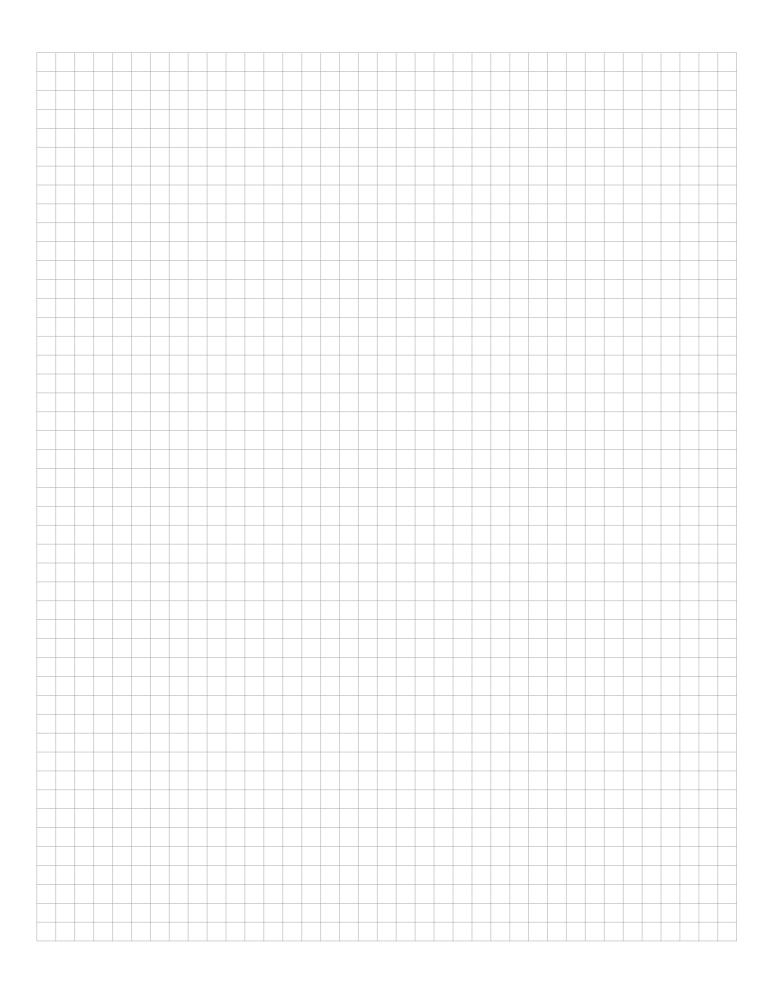
Contrary to the concept of describing devices via a text file (Device Description = DD), PACTware™ uses a universal interface (Field Device Tool = FDT) between the frame program PACTware™ and the individual software modules (DTM = Device Type Manager) for device operation. As a result, modern and user-friendly operating concepts can be implemented. FDT provides a universal interface in order to enable usage of the software modules in combination with the field devices of different manufacturers and under different application conditions.

The DTMs required for this purpose are available in a basic version (with limited functions) as well as in a professional version.

The PACTware ™ frame program and the basic DTMs can be downloaded free of charge from the Internet under www.turck.de.

The professional version including special functions is activated by a license key, which must be purchased separately.

The special functions are:


- Monitoring function: The actual measuring value and the input and output status can be viewed via a monitor window. The cyclic update function can be de-activated.
- **Print function:** The parameters can be printed in three categories:
  - Off-line parameterisation (all parameters)
  - Measuring values (frequency/rotary speed, output current, measuring span of the output current in %, output voltage, measuring span of the output voltage in %)
  - Diagnostics (all diagnostics bits)
- Trend viewer: A selection of the measuring values can be recorded cyclically. The value variations can be viewed online. Recorded value curves can be saved in a special text file format.
- **Storage function:** Parameters are stored with this function.

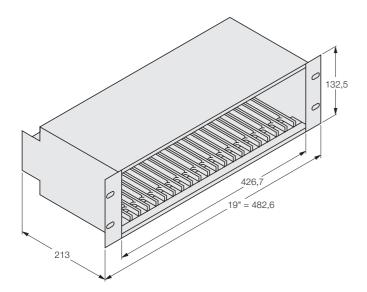
The professional version is activated by a double click on the licence file stored on the CD.

#### **DTM Professional License for:**

IM34... Ident.-no.: 6900404 MC25... Ident.-no.: 6900405








Industri<mark>al</mark> Au<mark>tomation</mark>





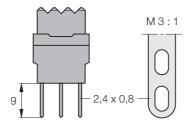
### 19" Card Rack



### 19" Card Rack MCE MCE 21-32 FL

|                                                                                                                   | <b>19" Card Rack</b> for self-assembly (84 TE/3 HE) | 19" Card Rack, assembled for edge connectors with solder terminations |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|
| Type                                                                                                              | MCE (kit)                                           | MCE 21-32 FL                                                          |
| Ident-no.                                                                                                         | 99017                                               | 91050                                                                 |
| Dimensions                                                                                                        |                                                     |                                                                       |
| Height                                                                                                            | 3 HE (132.5 mm)                                     | 3 HE (132.5 mm)                                                       |
| Width                                                                                                             | 84 TE (483 mm)                                      | 84 TE (483 mm)                                                        |
| Depth                                                                                                             | 211 mm                                              | 211 mm                                                                |
| Contents  2 side panels 2 Z-rails (rear) for edge connectors per DIN 416 2 mounting rails (front) 1 set of screws | 2 side panels                                       | 2 side panels                                                         |
|                                                                                                                   | 2 Z-rails (rear) for                                | 2 Z-rails (rear) for                                                  |
|                                                                                                                   | edge connectors per DIN 41612                       | edge connector per DIN 41612                                          |
|                                                                                                                   |                                                     | 2 mounting rails (front)                                              |
|                                                                                                                   | 1 set of screws                                     | 1 set of screws, 21 edge connectors 32 FL                             |
|                                                                                                                   |                                                     | 2 guide rail assemblies 21 x 4 TE                                     |
| Capacity                                                                                                          |                                                     |                                                                       |
| Furocards 100 x 160, per DIN 41494)                                                                               | _                                                   | 21 Furocards 4 TF each                                                |



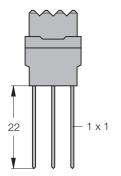

Automation

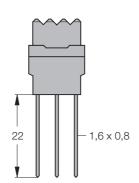
Industrial

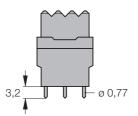
# Edge Connector 48 FL/Isolation Body 48 FC

| Туре                                   | 48 FL                  | 48 FC                  |  |
|----------------------------------------|------------------------|------------------------|--|
| ldent-no.                              | 99 067 99 064          |                        |  |
| Type of connection                     | soldering              | crimp snap-in          |  |
| Type of construction (per DIN 41 612)  | F                      | F                      |  |
| Number of contact rows                 | 3                      | 3                      |  |
| Allocated rows                         | z, b, d                | z, b, d                |  |
| Standard number of contacts            | 48                     | 48                     |  |
| Terminal grid                          | 5.08 mm 5.08 mm        |                        |  |
| Dielectric strength                    |                        |                        |  |
| - Contact to chassis                   | 2500 V <sub>rms</sub>  | 2500 V <sub>rms</sub>  |  |
| <ul> <li>Contact to contact</li> </ul> | 1550 V <sub>rms</sub>  | 1550 V <sub>rms</sub>  |  |
| Initial breakdown resistance           | $\geq 10^{11} \Omega$  | $\geq 10^{11}  \Omega$ |  |
| Contact resistance                     | ≤ 15 mΩ                | ≤ 15 mΩ                |  |
| Current rating at 70 °C                | 4 A                    | 4 A                    |  |
| Plating                                |                        |                        |  |
| - Contact area                         | Au                     | Au                     |  |
| - Terminal area                        | Sn                     | Sn                     |  |
| Isolation material                     | Polyamide 6.6          | Polyamide 6.6          |  |
| Coding                                 | on site to coding plan | on site to coding plan |  |
| Ident-No. coding                       | 99100                  | 99100                  |  |
| Ident-No. coding pin (1 pc.)           |                        |                        |  |

Contact springs CF size III available as accessories (Ident-No. 99071), lot size 200



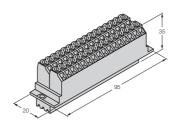



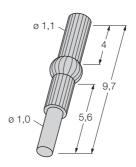




# **Edge Connectors 48 FW/48 FT/48 FS**

| Туре                                   | 48 FW                  | 48 FT                      | 48 FS                  |  |
|----------------------------------------|------------------------|----------------------------|------------------------|--|
| ldent-no.                              | 99068                  | 99066                      | 99065                  |  |
| Type of connection                     | Wire-wrap              | crimp-on (termi-point)     | PC board (solder pins) |  |
| (per DIN 41 612)                       | F                      | F                          | F                      |  |
| No. of contact rows                    | 3                      | 3                          | 3                      |  |
| Allocated rows                         | z, b, d                | z, b, d                    | z, b, d                |  |
| No. of contacts                        | 48                     | 48                         | 48                     |  |
| Terminal grid                          | 5.08 mm                | 5.08 mm                    | 5.08 mm                |  |
| Dielectric strength                    |                        |                            |                        |  |
| <ul> <li>Contact to chassis</li> </ul> | 2500 V <sub>ms</sub>   | 2500 V <sub>rms</sub>      | 2500 V <sub>rms</sub>  |  |
| <ul> <li>Contact to contact</li> </ul> | 1550 V <sub>ms</sub>   | 1550 V <sub>rms</sub>      | 1550 V <sub>rms</sub>  |  |
| Initial breakdown resistance           | $\geq 10^{11} \Omega$  | $\geq 10^{11} \Omega \geq$ | $10^{11}\Omega$        |  |
| Contact resistance                     | $\leq$ 15 m $\Omega$   | ≤ 15 mΩ                    | $\leq$ 15 m $\Omega$   |  |
| Current rating at 70 °C                | 4 A                    | 4 A 4 A                    |                        |  |
| Plating                                |                        |                            |                        |  |
| <ul> <li>Contact area</li> </ul>       | Au                     | Au                         | Au                     |  |
| <ul> <li>Terminal area</li> </ul>      | Sn                     | Sn                         | Sn                     |  |
| Isolation material                     | Polyamide 6.6          | Polyamide 6.6              | Polyamide 6.6          |  |
| Coding                                 | on site to coding plan | on site to coding plan     | on site to coding plan |  |
| Ident-no. coding                       | 99100                  | 99100                      | 99100                  |  |
| Ident-no. conding pin (1 pc.)          | 99075                  | 99075                      | 99075                  |  |





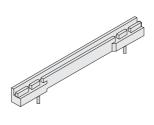



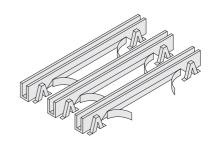



# Industri<mark>al</mark> Au<mark>tomation</mark>

| Type Ident-No.                         | LMIDIN-F32ZD-SFL32-2,5LMI<br>9906304                      | coding pins<br>99075 | crimping tool, size 1-3<br>99030 |
|----------------------------------------|-----------------------------------------------------------|----------------------|----------------------------------|
| Type of connection                     | screw connection                                          | coding pins for      | crimping tool for attaching      |
| Base material                          | Polyamide 6GF                                             | coding of            | the contact springs              |
| Base material                          | 1 olyantido odi                                           | edge connector       | (crimp contacts), size1-3        |
| Construction (to DIN 41 612)           | F                                                         | dage comicator       | (6) 66(6.6.), 6.26.              |
| No. of contact rows                    | 3                                                         |                      |                                  |
| Allocated contact rows                 | z, b, d                                                   |                      |                                  |
| Standard no. of contacts               | 48                                                        |                      |                                  |
| Terminal grid                          | 5.08 mm                                                   |                      |                                  |
| Dielectric strength                    |                                                           |                      |                                  |
| <ul> <li>Contact to chassis</li> </ul> | 2500 V <sub>rms</sub>                                     |                      |                                  |
| <ul> <li>Contact to contact</li> </ul> | 1550 V <sub>rms</sub>                                     |                      |                                  |
| Initial breakdown resistance           | $\geq 10^{11}  \Omega$                                    |                      |                                  |
| Contact resistance                     | ≤ 15 mΩ                                                   |                      |                                  |
| Current rating at 70 °C                | 4 A                                                       |                      |                                  |
| Plating                                |                                                           |                      |                                  |
| <ul> <li>Contact area</li> </ul>       | Au                                                        |                      |                                  |
| <ul> <li>Terminal area</li> </ul>      | Sn                                                        |                      |                                  |
| Isolation material                     | Polyamide 6.6                                             |                      |                                  |
| Coding                                 | ex factory according to customer specs                    | s possible           |                                  |
| ID Coding                              | 99100                                                     |                      |                                  |
| Connection                             | screw terminals                                           |                      |                                  |
| Connection profile                     | $\leq$ 2 x 1.5 mm <sup>2</sup> or 1 x 2.5 mm <sup>2</sup> |                      |                                  |
|                                        | with wire-sleeves                                         |                      |                                  |





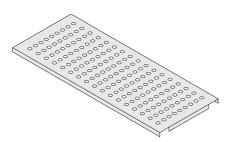



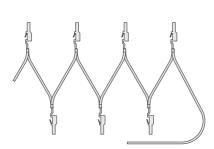


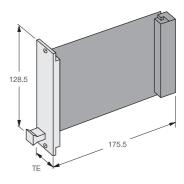

# **Guide Rail/Guide Rail Assembly**

| Type Ident-no. | guide rail F<br>99076                                                                                                 | guide rail assembly FM 21<br>99054                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Applications   | 1 pair of guide rails for 19" racks                                                                                   | 1 pair of guide rails for 19" racks                        |
|                | guide rail for quick and easy mounting                                                                                | for complete fitting of 19" racks with 4 TE slots          |
|                | for complete fitting of 19" racks with<br>4 TE slots, guide rail assembly FM 21 is re-<br>commended (Ident-No. 99054) | block guides are easy to mount due to their snap-on design |

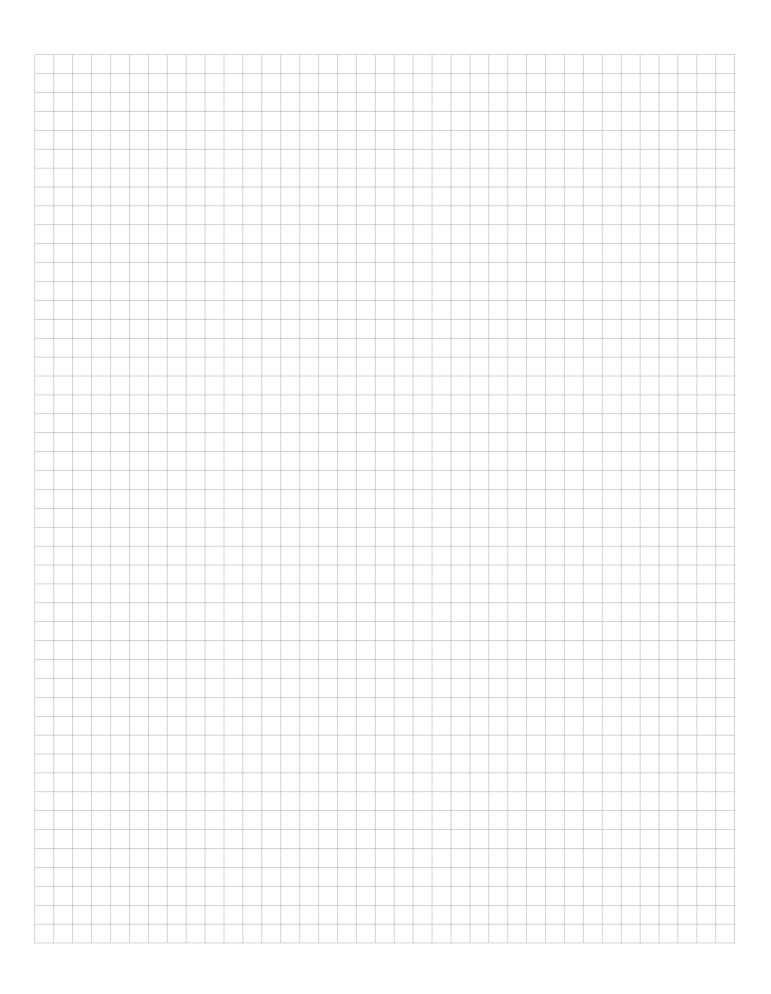






# **Barrier Plate/Bus Connections/Isolation Cards**

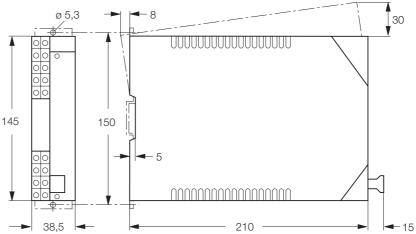
Industrial Au<mark>tomation</mark>


| Barrier plate SB<br>99056                                                                         | Types availabe: shown below                                                                                          | MC TR 1/4TE<br>90951                                                                                                    |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| IP20 type of protection is achieved by                                                            | Pre-assembled cables for fast                                                                                        | Isolator card for physical separation                                                                                   |
| covering the top and bottom of the rack                                                           | installation of bus connections                                                                                      | of Eurocards with intrinsically safe circuits                                                                           |
| with the barrier plate                                                                            | with crimp terminals                                                                                                 | from Eurocards with non-intrinsically safe circuits                                                                     |
| If Eurocards with intrinsically                                                                   | The bus line consists of 22 crimp contacts,                                                                          |                                                                                                                         |
| safe circuits are to be installed,<br>then the module racks must feature<br>protection class IP20 | size III, with a loopped 0.5 mm <sup>2</sup> wire.                                                                   | The appearance and technology of the isolation card is identical to a standard Eurocard with a 4 TE plastic front cover |
|                                                                                                   | The line length between contacts is suitable for a 4 TE installation schematic,                                      | for individual interlocking                                                                                             |
|                                                                                                   | The line length of the incoming cable is 500 mm.                                                                     | The isolator card takes up 1 position in the 19" rack - other front panel widths are available                          |
|                                                                                                   | Available types:                                                                                                     | on request                                                                                                              |
|                                                                                                   | - crimp bus connection blue (Ident-No. 99034)                                                                        |                                                                                                                         |
|                                                                                                   | <ul><li>- crimp bus connection red (Ident-No. 99035)</li><li>- crimp bus connection grey (Ident-No. 99033)</li></ul> | Other isolation cards available on request                                                                              |
|                                                                                                   |                                                                                                                      |                                                                                                                         |












**Automation** 

Industrial

# multicart® - Modular Housing MCA1



- For mounting of one 100 x 160 mm Eurocard (DIN 41494)
- Front plate width up to 4 TE (20.32 mm)
- With connectors to DIN 41612, type F
- Wiring according to device specification
- Also suited for intrinsically safe cards
- Protection class IP20
- Individual mounting on DIN rail or panel (surface) mounting
- Optional customer-specific coding and/or wiring

The MCA1 *multicart*® modular housing is designed for individual mounting of Eurocards, which are usually inserted in 19" racks, as stand-alone devices in mounting cabinets.

The housing is suited for mounting of a 100 x 160 mm Eurocard with a front panel of max. 4 TE for individual interlocking.

It can be snapped on 35 mm DIN rail or mounted directly on the panel.

The edge connector (per DIN 41612, type F) is internally wired to screw terminals that are accessible from the front of the unit. 10 screw terminal connections are available for non-intrinsically safe circuits and 8 screw terminals allow for connection of intrinsically safe circuits.

A label with part number, internal wiring and hook-up details is attached to the side of the housing.

The housing can be equipped with a 230 VAC power supply.

| Туре      | MCA1-BV. |
|-----------|----------|
| Ident-no. | 9 900 1  |

# Housing Base Material

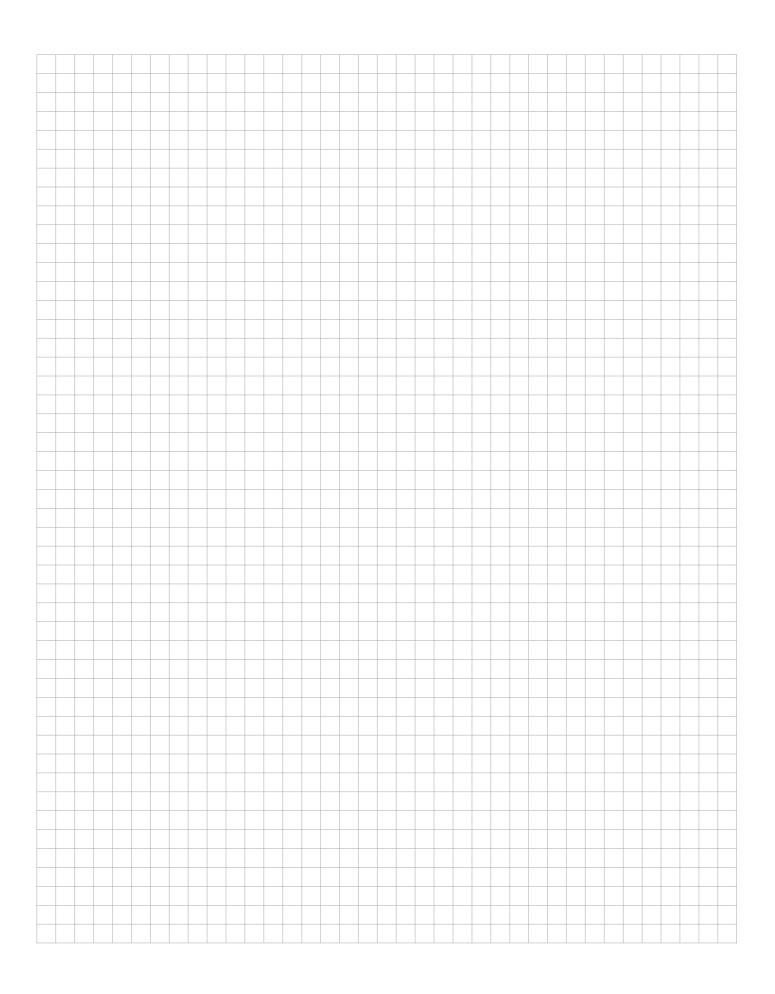
Weight Protection degree (DIN 40050)

Connection
Connector

Coding of edge connector Storage temperature

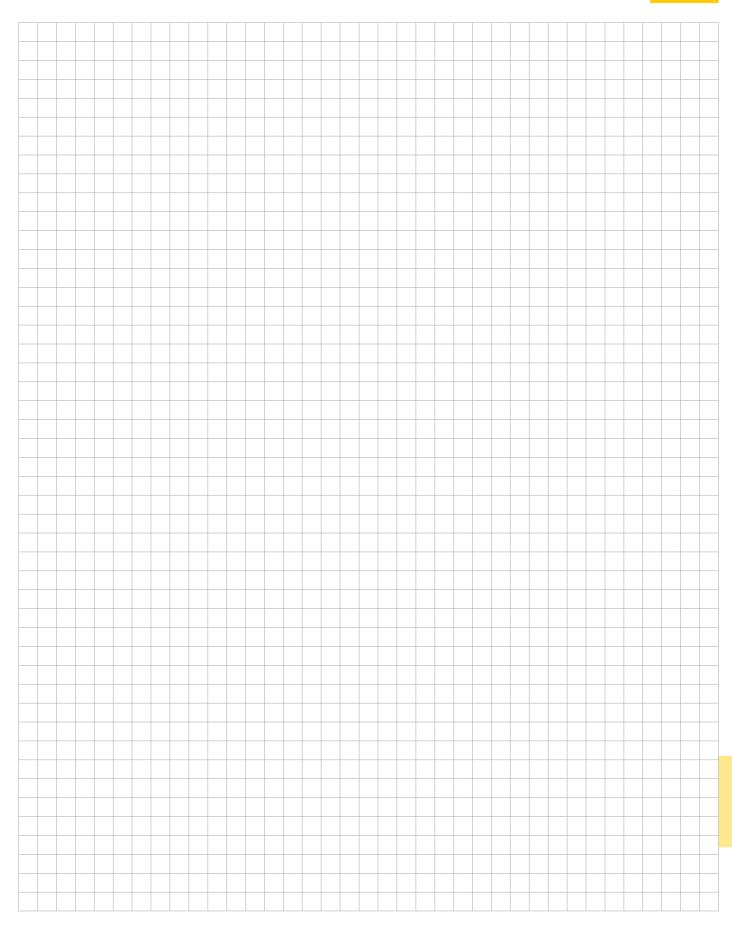
Polyamide 6GF approx. 300 g IP20

18 screw terminals 0.25...1.5 mm<sup>2</sup> crimp-snap-on insulating base, 48-pole


to DIN 41 612, type F to device specification -25...+60 °C

# Housing, without wiring Type

MCA1 basic housing


**Ident-No.** 9900100







Industri<mark>al</mark> Au<mark>tomation</mark>





| Туре                           | Page | Туре                                               | Page |
|--------------------------------|------|----------------------------------------------------|------|
|                                |      |                                                    |      |
| Isolating Switching Amplifier  |      | Solenoid Drivers/                                  |      |
| MC13-241AEx0-R/24VDC           | 1-3  | Intrinsically Safe Power Supplie                   |      |
| MC13-241AEx0-T/24VDC           | 1-5  | MC72-41Ex-T/24VDC                                  | 5-3  |
| MC13-36AEx0-R/24VDC            | 1-7  | MC72-42Ex-T/24VDC                                  | 5-3  |
| MC13-41Ex0-RP/24VDC            | 1-9  | MC72-43Ex-T                                        | 5-5  |
| MC13-441AEx0-R/24VDC           | 1-11 | MC72-44Ex-T                                        | 5-5  |
| MC13-441AEx0-T/24VDC           | 1-13 | Couplers                                           |      |
| MC13-451AEx0-R/24VDC           | 1-15 | MC73-44-R/24VUC                                    | 6-3  |
| MC13-451AEx0-RP/24VDC          | 1-17 | MC73-48-RE3/24VDC                                  | 6-5  |
| MC13-451AEx0-T/24VDC           | 1-19 | MC73-48-R/24VUC                                    | 6-7  |
| MC13-481AEx0-R/24VDC           | 1-21 | MC73-88-R/24VUC                                    | 6-9  |
| MC13-8Ex0-R/24VDC              | 1-23 | MC73-88-T/24VDC                                    | 6-11 |
| MC13-8Ex0-P/24VDC              | 1-23 | MC73-441Ex0-R/24VDC                                | 6-13 |
| MC16-41Ex0-RP                  | 1-27 | MC73-442Ex0-R/24VDC                                | 6-13 |
| MC16-42Ex0-TP                  | 1-29 | MC73-442EX0-R/24VDC                                | 6-15 |
| Datation along a description ( |      | MC73-481-RE/24VDC                                  | 6-15 |
| Rotational Speed meters/-mon   |      | MC73-881-R/24VUC                                   | 6-19 |
| MC25-144Ex0-LRP/24VDC          | 2-3  |                                                    |      |
| MC25-144-LRP/24VDC             | 2-5  | MC73-881-R3/24VDC                                  | 6-19 |
| Analogue Data Transmitters/    |      | Power Supplies/                                    |      |
| Measuring Amplifiers           |      | Fuse Cards                                         |      |
| MC30-28-Li/24VDC               | 3-3  | MC82-2425/230VAC                                   | 7-3  |
| MC31-121Ex0-LRP/24VDC          | 3-5  | MC82-2450/230VAC                                   | 7-3  |
| MC31-22AEx0-i/24VDC            | 3-7  | MC83-2SA                                           | 7-5  |
| MC32-12Ex0-LRP/24VDC           | 3-9  | MC83-4Si/24VDC                                     | 7-7  |
| MC32-121Ex0-LRP/24VDC          | 3-11 |                                                    |      |
| MC32-121Ex0-RP/24VDC           | 3-13 | Accesories                                         | 8-3  |
| MC32-11Ex0-Ri/24VDC            | 3-15 | Programming Adapter for PACTware™ Parameterisation | 0-3  |
| MC33-121Ex0-LRP/24VDC          | 3-17 | of TURCK Devices IM-PROG                           |      |
| MC33-12Ex0-LRP/24VDC           | 3-19 |                                                    | 0.5  |
| MC33-12Ex0-Hi/24VDC            | 3-21 | Interface module<br>MC-IM-232                      | 8-5  |
| MC33-12AEx0-i/24VDC            | 3-23 |                                                    |      |
| MC33-22Ex0-Hi/24VDC            | 3-25 | PACTware™<br>DTM Professional License              | 8-7  |
| MC33-22AEx0-i/24VDC            | 3-27 |                                                    |      |
| MC33-EP2-Ex0                   | 3-29 | 19" Card Rack MCE-21                               | 8-10 |
| MC34-121Ex0-LRP/24VDC          | 3-31 | Edge Connector 48 FL/                              | 8-11 |
| MC35-11Ex0-Hi/24VDC            | 3-33 | Isolation body 48 FC                               |      |
| MC35-22Ex0-i/24VDC             | 3-35 | Edge Connectors                                    | 8-12 |
| MC35-22Ex0-Hi/24VDC            | 3-37 | 48 FW/48 FT/48 FS                                  |      |
| Digital Time Cards             |      | LMIDIN-F32ZD-SFL32-2,5LMI                          | 8-13 |
| MC62-44-RP/24VDC               | 4-3  | LS Codiing pins<br>Crimping tool                   |      |
| MC62-48-RP/24VDC               | 4-3  |                                                    | 8-14 |
|                                | , 0  | Guide Rail/Guide Rail Assembly                     | 0-14 |
|                                |      | Aluminium Cover/<br>Bus Connections/Isolation Card | 8-15 |
|                                |      | multicart® Modular Housing                         | 8-17 |



# **INFORMATION -**SERVICE & SUPPORT

Industrial Automation

Sie wünschen weitere Informationen?

| Senden Sie uns dazu die nachlolgende |
|--------------------------------------|
| Auswahlliste oder nutzen Sie unseren |
| umfassenden Internet-Support.        |
|                                      |

### Sensortechnik

- □ Induktive Sensoren
- ☐ Induktive Sensoren uprox®+
- ☐ Induktive Sensoren für Schwenkantriebe
- □ Magnetfeldsensoren
- □ Opto-Sensoren
- ☐ Geräte für den Personenschutz
- ☐ Kapazitive Sensoren
- ☐ Ultraschallsensoren
- ☐ Strömungssensoren
- □ Drucksensoren
- ☐ Füllstandssensoren levelprox®
- □ Temperatursensoren
- ☐ Linearwegsensoren
- □ Drehwegsensoren
- ☐ Steckverbinder und Verteiler
- □ CD-ROM Sensortechnik

### Interfacetechnik

- ☐ Interfacetechnik im Aufbaugehäuse für Hutschiene (DIN 50022), Platten- oder Bodenmontage
- ☐ Interfacetechnik auf 19"-Karte für Baugruppenträger (DIN 41494)
- □ CD-ROM Interfacetechnik
- ☐ Miniaturrelais, Industrierelais, Zeitwürfel, Sockel
- ☐ Zeit- und Überwachungsrelais
- ☐ Ex-Schutz Grundlagen für die Praxis (Übersichtsposter)

### **Feldbustechnik**

- ☐ Kompakte Feldbuskomponenten PROFIBUS-DP/DeviceNet™/ **Ethernet**
- □ piconet® modulares Feldbus-I/O-System in IP67
- ☐ BL67 modulares Feldbus-I/O-System in IP67
- ☐ BL20 modulares Feldbus-I/O-System in IP20
- ☐ Remote-I/O-System excom®
- ☐ Segmentkoppler
- FOUNDATION™ fieldbus-Feldbuskomponenten
- □ PROFIBUS-PA-Feldbuskomponenten
- ☐ Feldbussystem sensoplex®2/2Ex

You would like to order additional information? Please return the order list below or use our comprehensive Internet support.

### Sensors

- □ Inductive sensors
- ☐ Inductive sensors uprox®+
- □ Inductive sensors for rotary actuators
- Magnetic-field sensors
- □ Photoelectric sensors
- ☐ Machine safety equipment
- □ Capacitive sensors
- □ Ultrasonic sensors
- ☐ Flow sensors
- Pressure sensors
- ☐ Level sensors levelprox®
- □ Temperature sensors
- ☐ Linear position sensors
- □ Rotary position sensors
- Connectors and junctions
- ☐ CD-ROM Sensors

### Interface technology

- □ Devices in modular housings for top-hat rail (DIN 50022) or panel mounting
- ☐ Devices on 19" card for DIN-rail mounting (DIN 41494)
- □ CD-ROM Interface technology
- Miniature relays, industrial relays, time cubes, sockets
- Programmable relays and timers
- Explosion protection basics for practical application (overview poster)

### Fieldbus technology

- □ Compact fieldbus components PROFIBUS-DP/DeviceNet™/ **Ethernet**
- □ piconet® modular fieldbus I/O-system
- ☐ BL67 modular fieldbus I/O-system
- ☐ BL20 modular fieldbus I/O-system in IP20
- ☐ Remote I/O-system excom®
- □ Segment coupler
- FOUNDATION™ fieldbus fieldbus components
- PROFIBUS-PA fieldbus components
- ☐ Fieldbus system sensoplex®2/2Ex

# www.turck.com



### Die TURCK-Produktdatenbank im World Wide Web

Sie suchen eine maßgeschneiderte Lösung für Ihre Applikation oder ein spezielles Produkt? Sie möchten Kataloge, Datenblätter, Handbücher, Software oder Konfigurationsdateien bestellen oder herunterladen? Ausführliche Informationen finden Sie im Internet unter www.turck.com

### TURCK's data base on the worldwide web

No matter whether you are looking for a solution to your specific application problem, you want to know more about a special product, or intend to order or download catalogues, data sheets, software, manuals or configuration files: You will find detailed information on the Internet under

www.turck.com



### ANTWORT/REPLY

| Absender/Sender: |      |  |
|------------------|------|--|
| Name:            |      |  |
| Firma/Company:   |      |  |
| Adresse/Address: |      |  |
| Tel./Phone:      | Fax: |  |
| E-Mail:          |      |  |

### Hans Turck GmbH & Co. KG

Witzlebenstraße 7

D-45472 Mülheim an der Ruhr Phone +49 208 4952-0 Fax +49 208 4952-264 turckmh@turck.com E-Mail

Internet www.turck.com



### **TURCK WORLD-WIDE HEADQUARTERS**

### **GERMANY**

Hans Turck GmbH & Co. KG Witzlebenstraße 7 45472 Mülheim an der Ruhr P. O. Box 45466 Mülheim an der Ruhr Phone (+49) (208) 4952-0 Fax (+49) (208) 4952-2 64 E-Mail turckmh@turck.com

### **BELGIUM**

Multiprox N. V. P. B. 71 Lion d'Orweg 12 9300 Aalst

Phone (+32) (53) 766566 Fax (+32) (53) 783977 E-Mail mail@multiprox.be

### **CZECH REPUBLIC**

TURCK s.r.o. Hradecká 1151 500 03 Hradec Králové 3 Phone (+ 420) (49) 5 51 87 66 Fax (+ 420) (49) 5 51 87 67 E-Mail turck@turck.cz

### PR OF CHINA

TURCK (Tianjin) Sensor Co. Ltd.
18,4th Xinghuazhi Road,
Xiqing Economic
Development Area,
300381 Tianjin
Phone (+ 86) (22) 83 98 81 88
83 98 81 99
Fax (+ 86) (22) 83 98 81 11
E-Mail turcktj@public1.tpt.tj.cn

### **EASTERN EUROPE / ASIA**

Hans Turck GmbH & Co. KG Am Bockwald 2 08344 Grünhain-Beierfeld Phone (+49) (3774) 1 35-0 Fax (+49) (3774) 1 35-2 22 E-Mail turckbf@mail-beierfeld.de

## FRANCE

TURCK BANNER S.A.S
3, Rue de Courtalin
Magny-Le-Hongre
77703 Marne-La-Vallee Cedex 4
Phone (+33) (1) 60436070
Fax (+33) (1) 60431018
E-Mail info@turckbanner.fr

### **GREAT BRITAIN**

TURCK BANNER LIMITED
Blenheim House
Hurricane Way
Wickford, Essex SS11 8YT
Phone (+44) (1268) 578888
Fax (+44) (1268) 763648
E-Mail info@turckbanner.co.uk

### HUNGARY

TURCK Hungary kft. Könyves Kalman Krt.76 1087. Budapest Phone (+36) (1) 4770740

Fax (+36) (1) 4770740 Fax (+36) (1) 4770741 E-Mail turck@turck.hu

### **ITALY**

TURCK BANNER S. R. L. Via Adamello, 9 20010 Bareggio (MI) Phone (+39) (02) 90364291 Fax (+39) (02) 90364838 E-Mail info@turckbanner.it

### **KOREA**

TURCK Korea Branch Office
Room No 406, Gyeonggi Technopark
1271-11, Sa 1-Dong, Sangnok-Gu, Ansan,
Gyeonggi-Do, Korea, 426-901
Phone (+82) (31) 5 00 45 55
Fax (+82) (31) 5 00 45 58
E-Mail sensor@sensor.co.kr

### **MEXICO**

TURCK Mexico S. DE R.L. DE C.V. Carr. Saltillo-Zacatecas km 4.5 s/n Parque Industrial "La Angostura" Saltillo, COAH. 25070 Phone (+ 52) 844 482 6924 Fax (+ 52) 844 482 6926 E-Mail ventasmexico@turck.com

### THE NETHERLANDS

TURCK B. V.
Postbus 297
8000 AG Zwolle
Phone (+31) (38) 4227750
Fax (+31) (38) 4227451
E-Mail info@turck.nl

### POLAND TURCK sp.z o.o

ul. Kepska 2 45-129 Opole Phone (+48) (77) 4434800 Fax (+48) (77) 4434801 E-Mail turck@turck.pl

### **ROMANIA**

TURCK Automation Romania SRL Str. Iuliu Tetrat nr. 18 Sector 1 011914 Bukarest Phone (+40) (21) 2 30 02 79

2 30 05 94 Fax (+40) (21) 2 31 40 87 E-Mail: info@turck.ro

### RUSSIA

TURCK Avtomatizazija O.O.O Volokolamskoe Shosse 1 office 606 a 125080 Moskau Phone (+7) (095) 1 05 00 54

Phone (+7) (095) 1 05 00 54 Fax (+7) (095) 1 58 95 72 E-Mail turck@turck.ru

### USA

TURCK Inc.
3000 Campus Drive
Minneapolis, MN 55441-2656
Phone (+1) (763) 553-9224
553-7300
Fax (+1) (763) 553-0708
E-Mail mailbag@turck.com

# Industrial Automation

www.turck.com

D200138 0405



Subject to change without notice

# INTERFACE TECHNOLOGY ON 19" CARD