Electronic Safety Sensors and Solenoid Interlocks Product Information

Contents

Technology and user advantages	age 4
Electronic safety sensors	
Safety sensor CSS 34	age 11
Safety sensor CSS 180	age 15
Electronic Safety Sensors and Interlocks	
Safety switch with separate actuator AZ 200	age 19
Solenoid interlock AZM 200	age 22
Actuator and accessories AZ/AZM 200	age 24
Serial diagnosis for functional monitoring SD gateway for PROFIBUS SD-I -DP-V0	age 27
Safety controllers for electronic sensors and interlocks	
AES 1135/1136	age 33
AES 1235/1236	age 34
AZR 321 ARPa	age 35
SRB 301 LC/B	age 36
SRB 324 ST	age 37
SRB-NA-RC-22	age 38
Wiring schematics	age 39
Connection of concors and interlocks to various safety controllers	ago 47

SCHMERSAL

3

Non-conta

The electronic monitoring of moving safety guard, including actuation in noncontact solenoid interlocks, enables the wear-free and non-contacting detection of the respective actuator. The patented pulse-echo technology permits large tolerances in the approach of the coded actuator, both in the switching distance as well as in the misalignment. Despite this, the switching points and hysteresis are extremely repeatable and constant.

The performance capabilities of the safety sensors and solenoid interlocks are verified by the following applied testing standards:

- Defined behaviour under fault conditions accord. to EN 60947-5-3, self-monitoring classification PDF-M.
- Requirements on safety related parts according to EN 954-1, Control Category 4.
- Requirements on IEC 61508 / use up to SIL 3 applications.

The requirements of IEC61508 furthermore guarantee the user extreme interferences immunity. In addition, with certain faults the standard enables the output of a signal before the machinery is switched off. The machinery can be put into its idle state before being switched off.

The microprocessor technology facilitates an intelligent diagnosis with simple and rapid fault finding, e.g. in the case of a cross short or wiring error.

The safety channels on the electronic sensors and interlocks can be wired in series to form a chain of from 16 to 31 devices depending on the type of devices used. Due to an independent functional check, Control Category 4 is retained with this wired chain. The chain can also be set up mixed with the safety sensors and interlocks described here.

Mode of operation

The products in the CSS range are generally of similar design. To detect the actuator they make use of the pulse-echo technology patented by Schmersal.

In this technology the sensor emits an electromagnetic pulse. When the actuator approaches the sensor, the actuator oscillates at its predetermined resonant frequency due to the induced energy. This oscillation is in turn read in by the sensor. While doing this, the sensor evaluates its distance to the actuator and the actuator coding. The actuator identified by the sensor is interpreted as a closed safety guard and the safety outputs are switched on.

Due to this working principle, the sensor cannot be mounted behind metal walls, e.g. behind stainless steel covers. The oscillation to be detected cannot penetrate the metal.

ect

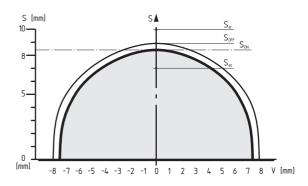
Application and field of use

The electronic safety sensors and interlocks provide monitoring of moving safety guard. When the safety guards open, the machine stops and the dangerous restarting of the machine is in all cases suppressed.

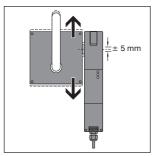
It's significant advantage lies in the non-contacting detection of the guard position. They are therefore completely free of wear and are insensitive to the offset of the sensor and actuator.

Electronic safety sensors

Due to their compactness, there are numerous applications for CSS sensors. It can be fitted to the most varied types of safety guards, but can also be employed for position monitoring on machine axes, because they feature high repeatability, an extremely low hysteresis and also without double switching point in the range of actuation (refer to the illustration).


The possible applications, particularly for the CSS 34, are further extended by its four different approach directions.

In particular, mounting on aluminium profile section is carried out quickly and easily with just two screws using the integral mounting plate. Rotating slotted washers in the mounting plate facilitate easy, exact alignment even with inaccurate mounting holes


Also, the sensors can be used in almost all places as required. The encapsulated sensors and actuators are insensitive to shock, vibration and dirt.

Consequently, the CSS safety sensors can be used anywhere, but in particular where protection against dangerous machine stop delay is not required.

Actuating curve of the CSS 180 safety sensor

Kept safel

Electronic solenoid interlocks

With dangerous machine movements after switching off, the safety guards must be kept closed until the machine has stopped. For this reason no safety sensors can or may be used here for monitoring, but rather solenoid interlocks must be employed (EN 1088).

But here too a door offset of \pm 5 mm is permitted with the use of CSS sensors. The mechanical design of the actuator also enables the complete actuator housing to be swivelled, which is normally mounted on the safety guard

Uneven drooping of the door can then be compensated between wide limits, i.e. the actuator can still be easily inserted into the switch (AZ 200) or into the interlock (AZM 200) even with these application problems.

This mechanical design means that the device is not damaged despite the offset of the actuator and device, which leads to greater machine and plant availability.

Due to the separate actuator unit, which facilitates an intuitive and ergonomic operation of the safety guard, the AZ and AZM 200 are especially suitable for use on safety guards, barrier fencing and machine housings.

This actuator unit also enables the integration of an additional sensor used for the door detection. With the aid of this second sensor, Control Category 4 according to EN 954-1 is realised with only one interlock or with only one switch on the safety guard. This unique feature replaces the second switch. Additional costs for the switch and its fitting are also saved.

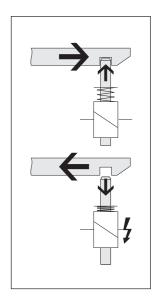
y shut

The optional exit release has also been developed especially for use on safety guards for barrier fencing and housings. It enables the unlocking and opening of the safety guards by turning the emergency handle located within the danger zone with just one hand movement.

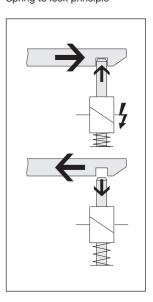
Principally, differentiation must be made between the following types of interlock release:

Manual release

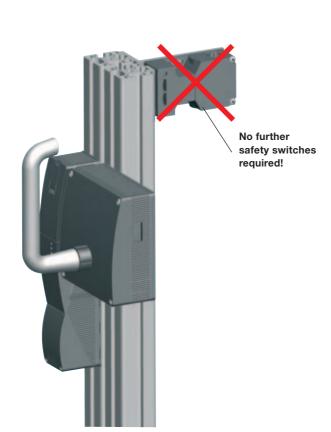
Machinery fitted with spring to lock solenoid interlocks normally have a way of opening the safety guard during a power failure, usually by means of a tool such as a triangular key. The Schmersal solenoid interlocks are fitted with such an auxiliary unlocking mechanism, the so-called "manual release".


Emergency exit

The emergency exit allows an intentional opening of the safety guard from inside the machine without tools, for example when personnel are trapped inside a machine


A differentiation is made between two functioning principles of the interlocks. One is the spring to lock principle and the other is the power to lock principle. With the spring to lock principle the safety guard is mechanically locked in the de-energised condition by a spring. With the power to lock principle the safety guard is mechanically locked by the magnetic force. These systems are therefore known as interlocks locked by spring and magnetic force. Since in the de-energised condition an interlock according to the

power to lock principle can be unlocked and the safety guard opened, the spring to lock principle is preferred for personnel safety.


The AZM 200 is available as a spring to lock and as a power to lock version.

Spring to lock principle

Power to lock principle

Detection and

With the electronic safety sensors and the electronic solenoid interlocks, the integral electronics allows extensive diagnosis of the respective operating status. The diagnosis is available in each individual device, but it can also be used with the series connection of different safety devices in the CSS range.

This operating status is indicated by the easily visible diagnostic LED located on the device. It is additionally supplied via a diagnostic line. Here, there is a choice of two options - the conventional signal output or the serial diagnostic line.

The following table shows the diagnosis of the AZM 200 electronic solenoid interlock. It is of the same type as in the electronic sensors CSS 180, CSS 34 or in the electrical safety switch AZ 200, but it is adapted to the respective function. Further details can be found in the data sheets in the product section.

The table shows that the diagnostic output for existing faults changes to 0 V, but the safety outputs are still at 24 V. A connected PLC can evaluate this special signal combination and brings the machine into its specific idle state before the machine is switched off. This prevents the breakage of tools and workpieces and increases the machine availability.

LED's	AZM status	Diagnostic output	Safety outputs
Green	No actuator	0 V	0 V
Yellow	Locked	24 V *	24 V ** (when X1=X2=24 V **)
Flashes yellow	Door closed and not locked	24 V *	0 V
Flashes red (1-9 pulses)	Fault: refer to flash codes	3 s delay: 24 V * -> 0 V	30 min delay: 24 V ** -> 0 V * U _{e2}

* U_{e2} ** U_{e1}

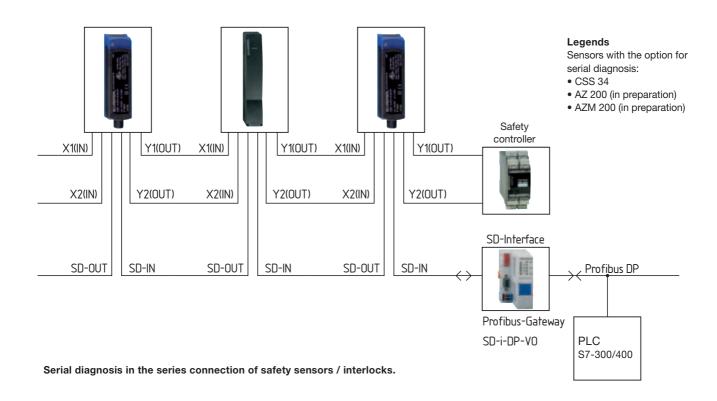
Display (red)	Flash codes	Designation
1 flash pulse		Fault, output Y1
2 flash pulses		Fault, output Y2
3 flash pulses		Cross short
4 flash pulses		Overtemperature
5 flash pulses		Target error
6 flash pulses		Error, target combination
7 flash pulses		Error, AD values
8 flash pulses		Fault, transmitter voltage
9 flash pulses		Channel error
Continuous red		Internal error

Display

The serial diagnosis

Sensors / interlocks with a serial diagnostic line possess a serial input and output line instead of the conventional signal output. If these SD devices are wired in series, then apart from the safety channels, the serial diagnostic lines are also wired in series. The "group line" of diagnostic information thus created is passed to a serial diagnostic gateway for evaluation. A maximum of 31 devices can be wired consecutively in this way, also as a series circuit of different devices.

Serial diagnostic gateway for PROFIBUS SD-I-DP-V0


The PROFIBUS Gateway SD-I-DP-V0 converts the serial signals to the PROFIBUS DP-V0 protocol. This serial diagnostic interface is integrated as a slave into an existing PROFIBUS DP system. In this way the diagnostic signals can be evaluated by a PLC.

Operating statuss can be read and also control commands, e.g. for unlocking a solenoid interlock, can be output to the devices in the series connected chain.

The basic information for the device function is automatically loaded into the linked PLC. For more comprehensive information a CD is enclosed with a selection of prepared function blocks for S7-300.

The advantage of this concept is not just in a substantially reduced amount of wiring, but rather also in the useful information about each participating sensor and in the control of individual interlock releases from the connected PLC. This function can considerably reduce machine downtime.

Data sheets, mounting and wiring instructions, declaration of conformity and other information at: www.schmersal.com

Overview of the features:

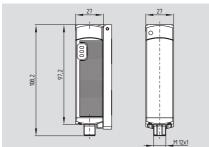
Advantages of actuation

- Non-contacting principle, no mechanical wear
 4 actuating directions
 Side faces can be rotated in 3 positions
 Rated switching distance at the head 12 mm, at the side faces 14 mm
- Sensor functioning with max. 36 mm misalignment with regard to the actuator
 High repeat accuracy of the switching points

- Advantages of wiring
 2 short-circuit proof PNP safety outputs
 (24 VDC per 500 mA)
 Self-monitored series-wiring of max. 31 sensors

- for Control Category 4 accord. to EN 954-1

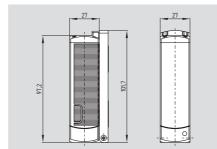
 Max. length of the sensor chain 200 m


 Integral cross short, wire-breakage and external voltage monitoring of the safety cables up to the control cabinet

- Advantages of diagnosis
 Detailed status information through LED's
- and diagnostic output
 Optionally serial diagnostic lines for series-wiring
 Increased availability: pre-signalling of errors during machine operation, e.g. sagging of the safety guard

- Approvals
 Classification PDF-M accord. to EN 60947-5-3
 Control Category 4 accord. to EN 954-1
 Up to SIL 3 applications accord. to IEC 61508, PFH value in preparation
 BG-approval in preparation

Sensor CSS 34



- Thermoplastic enclosure
- Control Category 4 accord. to EN 954-1
- Classification PDF-M accord. to EN 60947-5-3
- Up to SIL 3 applications accord. to IEC 61508, PFH value in preparation
- 2 short-circuit proof PNP safety outputs (24 VDC per 500 mA)
- Self-monitored series-wiring of max. 31 sensors for Control Category 4 accord. to EN 954-1
- Max. length of the sensor chain 200 m
- Integral cross short, wire-breakage and external voltage monitoring of the safety cables up to the control cabinet
- · Sensor with connecting cable or with integrated connector

Actuator CST 34

• CSS 34 sensor and CST 34 actuator are isometric

Technical data

Standards: EN 60947-5-3, EN 954-1,

IEC 61508

14 mm

amplitude 1 mm

Enclosure: glass-fibre reinforced thermoplastic Protection class: IP 65. IP 67 Mode of operation: inductive coded CST 34, Actuator:

CST 180-1, CST 180-2

Switching distances accord. to EN 60947-5-3: Device head: S_N: 12 mm S_{ar}: 15 mm Side face: S_{ao}: 12 mm

S_N: S_{ar}: 17 mm Hysteresis: min. 1 mm 0.5 mm

Repeat accuracy: Series wiring: max. 31 devices Cable length: max. 200m

Ambient conditions:

-25 °C ... + 70 °C Ambient temperature T_u:

Storage and transport

–25 °C ... + 85 °C temperature: Resistance to vibration: 10 ... 55 Hz,

30 g / 11 ms Resistance to shock: Switching frequency f: 3 Hz Response time: < 30 ms Duration of risk: < 30 ms

Electrical data:

24 VDC (-15% / +10%) U_e: l_e: 0.6 A 32 V U:: U_{imp}: 1000 V 0.05 A lo: < 0.5 mA Protection class: Ш Overvoltage category: Ш Degree of pollution: 3

Safety outputs: normally-open function, dual-channel, short-

circuit proof, p-type

1184290

1184291

1184292

SCHMERSAL

max. 0.25 A per output Output current: Voltage drop output: max. 0.5 V DC-12, DC-13 Utilisation category: Signal output: short-circuit proof, p-type max. 5 V under $U_{\rm e}$ U_{e2}: max. 0.05 A

DC-12, DC-13 Utilisation category: EMC rating: to EN 61000-6-2

Approvals

12

 ϵ

Approvals

Ordering details

CSS-①-34-②-③-M-④ Safety sensor						
No.	Replace	Description				
1	12	Switching distance S _N (mm) for head actuation				
	14	Switching distance S _N (mm) for sidewards				
(2)	S	Sidewards actuation				
	V	Head actuation				
3	D	Signal output				
	SD	Serial diagnosis				
4	L	Cable (Y-UL 2517)				
	ST	8 x 0.35 mm ² , 2m length Integrated connector *, 8 poles				

Ordering details

	CST-34-①-1 Actuator No. Replace Description					
•	S V	Sidewards actuation Head actuation				

 ϵ

Sensor and actuator must be ordered separately.

* Cable for connector version -ST with pre-wired female connector 8 x 0.25 mm², 2.5 m length

5.0 m length

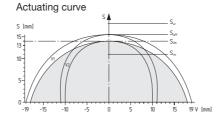
10 m length

Actuating directions

The actuating curves represent the points at which the CSS 34 sensor switches on and off upon the approach of the actuator.

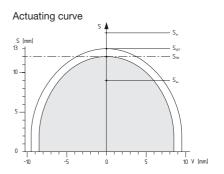
Legend

S Switching distance V, V1, V2 Possible misalignment (see schematic)

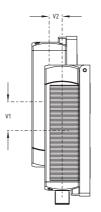

 $\begin{array}{ll} S_{ON} & Switch-on\ point \\ S_{OFF} & Switch-off\ point \\ S_{H} & Hysteresis\ area \end{array}$

 $S_{ON} < S_{H} < S_{OFF} \\$

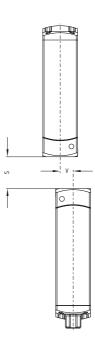
S_{ao} Assured operation point S_{ar} Assured release point accord. to EN 60947-5-3


Switch-on/-off diagram

Actuation sidewards


Switch-on/-off diagram

Actuation from the top


Sideways misalignment

horizontal: max. \pm 10 mm (V2) vertical: max. \pm 18 mm (V1)

Top misalignment

horizontal: $max. \pm 8.5 mm (V)$

Safety controller

Requirements for the safety controller

Dual-channel safety input, suitable for p-type sensors with normally-open function. The internal function tests of the sensors cause the outputs to cyclicly switch off for max. 0.5 ms, which must be tolerated by the safety controller. The safety controller must not be equipped with a cross-wire detection function.

The programme of suitable safety controllers for these applications can be found on page 32 ff.

Connection

Wiring of the device cable or the integrated connector.

Cable colour	Wiring of sensor with signal output	Wiring of sensor with serial diagnosis	Pin configuration
BN (brown)	A1 Ue	A1 Ue	Pin 1
BU (blue)	A2 GND	A2 GND	Pin 3
WH (white)	X1 Safety input 1	X1 Safety input 1	Pin 2
VT (violet)	X2 Safety input 2	X2 Safety input 2	Pin 6
BK (black)	Y1 Safety output 1	Y1 Safety output 1	Pin 4
RD (red)	Y2 Safety output 2	Y2 Safety output 2	Pin 7
GY (grey)	Signal output	SD Output	Pin 5
PK (pink)	Without function	SD Input	Pin 8

Diagnosis of the electronic safety sensor CSS 34 with signal output

When the safety guard is opened, the safety outputs of the CSS 34 are immediately disabled.

A cross short or any error that does not immediately affect the function of a safety sensor will lead to a 30 min. delayed shutdown of the safety channels. The diagnostic output however will be disabled instantaneously.

The downstream control can use the different signal combinations of the safety channel and the diagnostic output to set the machine safely to a hold position instead of immediately interrupting the production process.

Function of the sensor LED's and the diagnostic output

No target green 0 V 0 V Actuated yellow 24 V * 24 V ** Actuated flashes yellow 2 Hz pulsed 24 V **	Sensor function	LED's in the sensor housing	Signal output (24 VDC, 50 mA)	Safety outputs
Actuated flashes yellow 2 Hz pulsed 24 V **	No target	green	0 V	0 V
	Actuated	yellow	24 V *	24 V **
		flashes yellow	2 Hz pulsed	24 V **
Fault flashes red 24 V * -> 0 V 30 min delay: 24 V ** -> 0 V	Fault	flashes red	24 V * -> 0 V	,

' U_{e2}

Display (red)	Flash codes	Designation
1 flash pulse 2 flash pulses 3 flash pulses 4 flash pulses	 	Fault, output Y1 Fault, output Y2 Cross short Overtemperature
5 flash pulses		Fault actuator

Diagnosis of the electronic safety sensor CSS 34 with serial diagnosis

Sensors with a serial diagnostic line possess a serial input and output line instead of a diagnostic output. If CSS sensors are wired in series, the safety channels as well as the serial diagnostic lines are wired in series.

Max. 31 CSS 34 sensors can be wired in series. For the evaluation of the serial diagnostic line, the serial Diagnostic Gateway for PROFIBUS DP SD-I-DP-V0 is used. This serial Diagnostic Interface is integrated as slave into Profibus DP system. In this way, the diagnostic signals can be evaluated by a PLC.

The following operational information is automatically and continuously written in an input byte for each CSS 34 sensor in the serieswired chain:

Bit 0: Safety outputs released

Bit 1: Sensor actuated, actuator identified

Bit 4: Safety inputs energised

Bit 5: Sensor actuated in the hysteresis area

Bit 6: Error pre-signalling, switch-off delay activated

Bit 7: Error, safety outputs disabled

Function of the diagnostic LED's, the serial status signals and the safety outputs

Sensor function	Diagnostic LED's	Safety outputs								ic byte 0
Supply voltage on	green	0 V								
No target	green	0 V	0	0	0	1	0	0	0	0
Actuated	yellow	24 V **	0	0	0	1	0	0	1	1
Actuated in limit area	flashes yellow	24 V **	0	0	1	1	0	0	1	1
Warning	flashes red	24 V **	0	1	0	1	0	0	1	1
Fault	flashes red	0 V	1	0	0	1	0	0	1	0

* U_{e2} ** U_{e1}

Error pre-signalling, error messages through module

Bit Nr.	Error pre-signalling	Bit Nr.	Error messages
0	error output Y1	0	error output Y1
1	error output Y2	1	error output Y2
2	cross short outputs	2	cross short outputs
3	temperature too high	3	temperature too high
4	_	4	incorrect or defective actuator
5	internal error	5	interner Fehler
6	initialisation error SD slave	6	_
7	communication error SD slave	7	-

Overview of the features:

Advantages of actuation

- Non-contacting principle, no mechanical wear
 Suitable for concealed mounting
 Rated switching distance 8 mm
 Misaligned actuation possible
 High repeat accuracy of the switching points

- Advantages of wiring
 2 short-circuit proof PNP safety outputs
 (24 VDC per 500 mA)

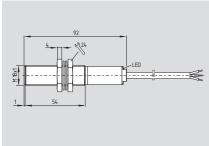
- Self-monitored series-wiring of max. 31 sensors for Control Category 4 accord. to EN 954-1
 Max. length of the sensor chain 200 m
 Integral cross short, wire-breakage and external voltage monitoring of the safety cables up to the control cabinet

Advantages of diagnosis

- Detailed status information through LED's and diagnostic output
 Increased availability: pre-signalling of errors during machine operation, e.g. sagging of the safety guard
 Controlled shutdown of the machine under observance of the running processes in case of emergency

- Approvals

 Classification PDF-M accord. to EN 60947-5-3


 Control Category 4 accord. to EN 954-1

 Up to SIL 3 applications accord. to IEC 61508, PFH value < 6.1 x 10-9

 BG-approved

CSS 180

- Thermoplastic enclosure
- Control Category 4 accord. to EN 954-1
- Classification PDF-M accord. to EN 60947-5-3
- Up to SIL 3 applications accord. to IEC 61508, PFH value < 6.1 x 10⁻⁹
- Electronic contact-free, coded system
- Particularly large switching distance
- Misaligned actuation possible
- High repeat accuracy of the switching points
- · Self-monitored series-wiring of max. 16 sensors
- Max. length of the sensor chain 200 m
- Comfortable diagnostics through sensor LED and electronic signal output
- Early warning when operating near the limit of the sensor's hysteris range
- 2 short-circuit proof PNP safety outputs (24 VDC per 500 mA)

Technical data

Standards: IEC 60947-5-3, EN 954-1 IFC 61508

cylindrical

Design: Enclosure: glass-fibre reinforced thermoplastic Protection class: IP 65 and IP 67 to EN 60529 Connection: cable or cable with connector M12x1

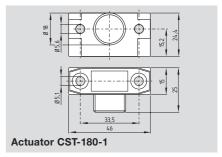
according to execution: Cable section: 4 x 0.5 mm², 5 x 0.34 mm², 7 x 0.25 mm²

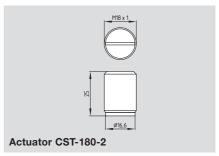
Cable length: max. 200 m Mode of operation: inductive CST-180-1, CST-180-2 Actuator: Control category: 4 to EN 954-1 Classification: up to PDF-M to IEC 60947-5-3

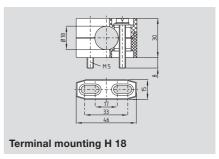
up to SIL 3 applications to SIL classification: IEC 61508, PFH $< 6.1 \times 10^{-9}$

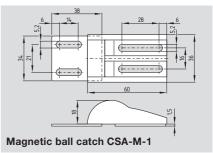
Rated switching distance S_n: 8 mm S_{ao}: 7 mm S_{ar}: 10 mm Hysteresis: ≤ 0.7 mm Repeat accuracy R: ≤ 0.2 mm Response time: < 30 ms Duration of risk: ≤ 30 ms

24 VDC - 15 % / + 10 % Ue l_e: 1.0 A lo: 0.05 A ≤ 0.5 mA Leakage current I_r: Protection class: Ш Ш Overvoltage category:


Degree of pollution: 3 U_{imp} : 0.8 kV Ui: 32 VAC/DC short-circuit proof, p-type Safety outputs:

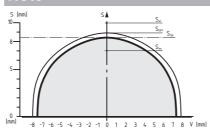

Output current: max. 0.5 A per output U_d : max. 0.5 V I_e/U_e: 0.5 A / 24 VDC Signal output: short-circuit proof, p-type I_e/U_e: 0.05 A / 24 VDC


Utilisation category: DC-12, DC-13 Ambient temperature: -25 °C ... + 60 °C Storage and transport temp.: - 25 °C ... + 85 °C Switching frequency f: ca. 3 Hz


30 g / 11 ms Resistance to shock: Resistance to vibration: 10 ... 55 Hz, amplitude 1 mm

System components

Approvals



Ordering details

CSS 8-180-1-2-3

No.	Replace	Description
1	2P 2P+D	2 PNP safety outputs 2 PNP safety outputs and 1 PNP signal output (diagnostic)
3	E Y M L LST	End or individual device Series-wiring device Multifunction device Pre-wired cable Pre-wired cable and connector

Note

Legend

S Switching distance ٧ Misalignment S_{on} Switch-on point Switch-off point S_{off} S_h Hysteresis area Assured operation point Assured release point accord. to EN 60947-5-3

Ordering details

Actuator	CST-180-1
Actuator	CST-180-2
Terminal mounting	H 18
Magnetic ball catch	CSA-M-1

Actuators must be ordered separately.

16

Connection

End or individual device: CSS- 8-180-2P+...-**E**-L...

Cable:

2 m length;

cable section 4 poles: 4 x 0.5 mm², 5 poles: 5 x 0.35 mm²

Connector: (option)

Connector male M12 x 1, 4 poles Connector male M12 x 1, 5 poles

Cable colour	Wiring	Pin configuration
BN (brown)	A1 Ue	Pin 1
BU (blue)	A2 GND	Pin 3
BK (black)	Y1 Safety output 1	Pin 4
WH (white)	Y2 Safety output 2	Pin 2
GY (grey)	Only 5 pole version: Signal output (option)	Pin 5

Series-wiring device:

CSS-8-180-2P-Y-L...

Cable:

Inputs (IN), grey cable 0.25 m length; 4 poles: 4 x 0.5 mm², Outputs (OUT), black cable 2 m length; 4 poles: 4 x 0.5 mm²

Connector: (option)

Inputs (IN): Connector female M12 x 1, 4 poles Outputs (OUT): Connector male M12 x 1, 4 poles

Cable colour	Wiring grey cable (IN)	black cable (OUT)	Pin configuration	
BN (brown)	A1 Ue	A1 Ue	Pin 1	
BU (blue)	A2 GND	A2 GND	Pin 3	
BK (black)	X1 Safety input 1	Y1 Safety output 1	Pin 4	
WH (white)	X2 Safety input 2	Y2 Safety output 2	Pin 2	

Connector female male

Multifunction device:

CSS-8-180-2P+D-M-L...

Cable:

2 m length;

cable section 7 poles: 7 x 0.25 mm²

Connector: (option)

Connector male M12 x 1, 8 poles

Cable colour	Wiring	Pin configuration
BN (brown)	A1 Ue	Pin 1
BU (blue)	A2 GND	Pin 3
VT (violet)	X1 Safety input 1	Pin 6
WH (white)	X2 Safety input 2	Pin 2
BK (black)	Y1 Safety output 1	Pin 4
RD (red)	Y2 Safety output 2	Pin 7
GY (grey)	Signal output	Pin 5
_	spare	Pin 8

Safety controller

Requirements for the safety controller

Dual-channel p-type safety input. The internal function tests of the sensors cause the outputs to cyclicly switch off for max. 2 ms, which must be tolerated by the safety controller.

The programme of suitable safety controllers for these applications can be found on page 32 ff.

Note

- Series-wiring of sensors:
- 16 self-monitoring CSS 180 safety sensors can be wired in series without loss ot control category 4 accord. to EN 954-1. The redundant output of the first sensor is wired into the input of the next sensor.
- The voltage drop over a long sensor chain should be taken into account when planning

cable routing. It depends on several factors which are operating voltage, cable length, ambient temperature, number of sensors series connected, and input load of the safety control monitor.

Diagnosis of the electronic safety sensor CSS 180

The diagnostic function of the CSS 180 safety sensor

The safety sensor indicates the operating condition and faults in three colours in the transparent end cap.

The electronic diagnostic output signals errors before the safety outputs are disabled, thus enabling a controlled shutdown in case of emergency.

When a safety guard is opened, the safety outputs of the CSS sensor are immediately disabled.

A cross short or any error that does not immediately affect the function of a safety sensor leads to a 1-minute delayed shutdown. The diagnostic output however is instantaneously disabled.

The downstream control can use the different signal combinations of the safety channel and the diagnostic output to set the machine safely to a hold position instead of immediately interrupting the production process.

Diagnostics function of the electronic safety sensor CSS 180

Sensor function	LED's in the sensor housing	Signal output (24 VDC, 50 mA)	Safety outputs
No target	green	0 V	0 V
Actuated	yellow	24 V *	24 V **
Actuated in limit area	flashes yellow	2 Hz pulsed	24 V **
Fault	flashes red	3 s delay: 24 V * -> 0 V	1 min delay: 24 V ** -> 0 V

* U_{e2} ** U_{e1}

Display (red)	Flash codes	Designation

1 flash pulse 2 flash pulses 2 flash

4 flash pulses

5 flash pulses

Fault, output Y1
Fault, output Y2

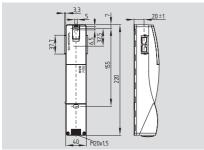
Cross short, fault safety outputs 1 and 2

Overtemperature Fault actuator, coding

Electronic solenoid interlock AZM 200 and electronic safety switch with separate actuator AZ 200

Overview of the features:

Advantages


- Sensor technology permits an offset of ± 5 mm between actuator and interlock
 Intelligent diagnosis
 Modern and ergonomic design
 Simple mounting
 Accurate adjustment through slotted holes
 3 LED's to show operating conditions (see tabel)
 1 or 3 signal outputs

- Approvals
 Control category 4 accord. to EN 954-1 with door detection sensor (without additional second switch)
 Up to SIL 3 applications accord. to IEC 61508, PFH value 4.3 x 10-9

Electronic safety switch with separate actuator AZ 200

AZ 200

- Thermoplastic enclosure
- Sensor technology permits an offset of ± 5 mm between actuator and interlock
- Control category 4 accord. to EN 954-1 with door detection sensor (without additional second switch)
- Up to SIL 3 applications accord. to IEC 61508
- Intelligent diagnosis
- Modern and ergonomic design
- Simple mounting
- Accurate adjustment through slotted holes
- 3 LED's to show operating conditions (see tabel)
- 1 or 3 signal outputs

Technical data

Standards: IEC/EN 60947-5-1 FN 954-1

> IEC/EN 61508 glass-fibre reinforced thermo-

Enclosure: plastic, self-extinguishing

Mechanical life: ≥ 1 million operations F_{max}: 2000 N Latching force: 30 N

Protection class: IP 67 to EN 60529 Protection class: II, 🗆 Overvoltage category: Ш

Degree of pollution: Connection: screw terminals or cage clamps

Cable section: min. 0.25 mm² max. 1.5 mm² (incl. conductor ferrules)

M20 x 1.5 Cable entry: Series wiring: max. 31 devices max 200m Cable length:

> (Cable length and cable section alter the voltage drop depending on the output current)

> > amplitude 1 mm

Ambient conditions:

Ambient temperature: - 25 °C ... + 70 °C

Storage and transport

temperature: - 25 °C ... + 85 °C Resistance to vibration: 10 ... 55 Hz,

Resistance to shock: 30 g / 11 ms Switching frequency f: 1 Hz Response time: < 30 ms Duration of risk: < 90 ms Time to readiness: < 2 s

Electrical data:

Leakage current I_r:

24 VDC -15%/+10% Ue l_e: 1 A max. 0.5 mA I₀: U_{imp}: 800 V 32 VDC U:: Fuse rating: internally short-circuit proof Device insulation: to UL $508 \le 4$ A; depending on the number of devices and loads (Y1, Y2 and OUT)

Technical data

Safety inputs X1 and X2:

Voltage range – 3V ... 5V: Low Voltage range 15V ... 30V: High > 2 mA at 24 V

Safety outputs Y1 and Y2:

short-circuit proof, p-type U_{e1}: 0 V to 4 V under U_e max. 0.25 A Utilisation category: DC-13 Signal output OUT: short-circuit proof, p-type

0 V to 4 V under U_e max. 0.05 A / 0.1 A Utilisation category: DC-13

Classification:

3

to FN 954-1: up to control category 4 (with appropriate circuit) PFH value 4.3 x 10⁻⁹, to IFC 61508:

up to SIL 3 applications

Approvals

in preparation

Ordering details

AZ 2001-2-32P

No.	Replace	Description
1	SK	Screw terminals
	CC	Cage clamps
	ST	Connector (M23)
2		without door
		detection sensor
	T	with door detection
		sensor
3	1P	1 Signal output
	3P	3 Signal outputs

Note

The actuators and other accessories can be found on page 24 and 25.

The safety switch/solenoid interlock and the actuator unit must be ordered separately!

Electronic safety switch with separate actuator AZ 200

Diagnosis of the AZ 200 with 1 or 3 signal outputs

The **AZ 200.-.1P2P** solenoid interlock has only one diagnostic output:

OUT

OUT3

The **AZ 200.-.3P2P** has three diagnostic outputs:

OUT Actuator inserted, locking enabled

or locked

OUT2 Signals errors before the safety outputs are disabled, thus allowing for a

controlled shutdown of the machine

Guard closed, actuator not inserted

LED functions:

green supply voltage on

yellow locked red error

Function of the sensor LED's and the diagnostic output

Door function	LED's	Safety outputs 24 VDC, 250 mA per output Y1, Y2	Signal outpu AZ 2003P2P 24 VDC, ∑ 100 mA OUT OUT2 OUT3		2P) mA	1P2P 50 mA
Door open	green	0 V	0 V	0 V	0 V	0 V
Door closed	green	0 V	0 V	0 V	24 V *	0 V
Door closed, actuator inserted	yellow + green	24 V **	24 V *	0 V	24 V *	24 V *
Actuator inserted, fault	flashes red (refer to flash codes)	24 V **	24 V *	24 V *	24 V *	0 V

* U_{e2}
** U_{e1}

Display	Flash codes	Designation	Autonomous shutdown after
1 flash pulse		Fault, output Y1	30 min
2 flash pulses		Fault, output Y2	30 min
3 flash pulses		Cross short	30 min
4 flash pulses		Overtemperature	30 min
5 flash pulses		Target error	0 min
6 flash pulses		Error, target combin.	0 min
7 flash pulses		Error, AD values	30 min
8 flash pulses		Fault, transmit. voltage	0 min
9 flash pulses		Channel error	0 min
Continuous red		Internal error	0 min

Safety controller

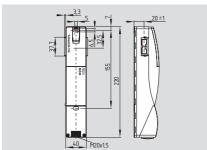
The programme of suitable safety controllers for these applications can be found on page 32 ff.

The achievable control category accord. to EN 954-1 safety controllers depends on the safety controller as well as the structure of the entire safety circuit.

Connection

Wiring diagram for the device cable or the integrated connector

Cable colour	Wiring of the safety switch with 1 signal output	Wiring of the safety switch with 3 signal outputs	Pin configuration
BN (brown)	24 V	24 V	Pin 1
BU (blue)	GND	GND	Pin 3
WH (white)	X1 Safety input 1	OUT2 Signal output	Pin 2
VT (violet)	X2 Safety input 2	OUT3 Signal output	Pin 6
BK (black)	Y1 Safety output 1	Y1 Safety output 1	Pin 4
RD (red)	Y2 Safety output 2	Y2 Safety output 2	Pin 7
GY (grey)	OUT Signal output	OUT Signal output	Pin 5
PK (pink)	spare	spare	Pin 8
_	spare	spare	Pin 9



SCHMERSAL 2°

Electronic solenoid interlock AZM 200

AZM 200

- Thermoplastic enclosure
- Sensor technology permits an offset of ± 5 mm between actuator and interlock
- Control category 4 accord. to EN 954-1 with door detection sensor (without additional second switch)
- Up to SIL 3 applications accord. to IEC 61508
- Intelligent diagnosis
- Modern and ergonomic design
- Simple mounting
- Accurate adjustment through slotted holes
- 3 LED's to show operating conditions (see tabel)
- · Manual release from both sides
- 1 or 3 signal outputs

Technical data

Standards: IEC/EN 60947-5-1, EN 954-1

IEC/EN 61508

Enclosure: glass-fibre reinforced thermo-

plastic, self-extinguishing

Mechanical life: ≥ 1 million operations 2000 N F_{max}:

Latching force: 30 N IP 67 to EN 60529 Protection class:

Protection class: II, 🗆 Overvoltage category: Ш Degree of pollution: 3 Connection: screw terminals

or cage clamps Cable section: min. 0.25 mm² max. 1.5 mm²

(incl. conductor ferrules) Cable entry: M20 x 1.5

Series wiring: max. 31 devices Cable length: max. 200m

(Cable length and cable section alter the voltage drop depending on the output current)

Ambient conditions:

Ambient temperature:

Spring to lock principle: -25 °C ... +60 °C Power to lock principle: -25 °C ... +50 °C

Storage and transport

- 25 °C ... + 85 °C temperature: Resistance to vibration: 10 ... 55 Hz, amplitude 1 mm

Resistance to shock: 30 g / 11 ms Switching frequency f: 1 Hz Response time: < 30 ms Duration of risk: < 90 ms Time to readiness: < 2 s

Electrical data:

24 VDC -15%/+10% U_e: l_e: 1 A I_0 : max. 0.5 mA U_{imp}: 800 V Ui: 32 VDC Fuse rating: internally short-circuit proof Device insulation: to UL $508 \le 4 A$; depending on the number of

devices and loads (Y1, Y2 and OUT) Leakage current I_r: < 0.5 mA

Technical data

Safety inputs X1 and X2:

Voltage range – 3V ... 5V: Low Voltage range 15V ... 30V: High

> 2 mA at 24 V

Safety outputs Y1 and Y2:

short-circuit proof, p-type U_{e1}: 0 V to 4 V under U_e max. 0.25 A Utilisation category: DC-13 Signal output OUT: short-circuit

proof, p-type 0 V to 4 V under U_e max. 0.05 A / 0.1 A DC-13

Utilisation category: Solenoid control IN:

Voltage range – 3V ... 5V: Low Voltage range 15V ... 30V: High

> 5 mA at 24 V 100% ED

Classification:

to EN 954-1: up to control category 4

(with appropriate circuit)

to IEC 61508: PFH value 4.3 x 10⁻⁹, up to SIL 3 applications

Approvals

(T) in preparation

Ordering details

AZM 2001-2-32P4

No.	Replace	Description
1	SK	Screw terminals
	CC	Cage clamps
	ST	Connector (M23)
2		without door
		detection sensor
	T	with door detection
		sensor
3	1P	1 Signal output
	3P	3 Signal outputs
4		Spring to lock principle
	а	Power to lock principle

The actuators and accessories can be found at page 24 and 25.

The safety switches/solenoid interlocks and the actuator unit must be ordered separately!

Electronic solenoid interlock AZM 200

Diagnosis of the AZM 200 with 1 or 3 signal outputs

The **AZM 200.-.1P2P** solenoid interlock has only one diagnostic output:

OUT

The **AZM 200.-.3P2P** has three diagnostic outputs:

OUT Actuator inserted, locking enabled

or locked

OUT2 Signals errors before the safety outputs are disabled, thus allowing for a

OUT3 Guard closed, actuator not inserted

controlled shutdown of the machine

LED functions:

green supply voltage on

yellow locked red error

Function of the sensor LED's and the diagnostic output

Door function	LED`s	Safety outputs 24VDC, 250 mA			1P2P 50 mA	Solenoid control 24 VDC, 5 mA		
		per output	оит	OUT2	оитз	оит	Spring to lock	Power to lock
Door open	green	0 V	0 V	0 V	0 V	0 V	0 V	0 V
Door closed	green	0 V	0 V	0 V	24 V *	0 V	0 V	0 V
Door closed, actuator inserted	yellow	0 V	24 V *	0 V	24 V *	24 V *	0 V	0 V
Guard closed	yellow	24 V **	24 V *	0 V	24 V *	0 V	0 V	24 V
Guard closed, fault	flashes red (refer to flash codes	24 V **	24 V *	24 V *	24 V *	0 V	0 V	24 V

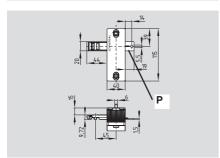
^{*} U_{e2} ** U_{e1}

Display	Flash codes	Designation	Autonomous shutdown after
1 flash pulse		Fault, output Y1	30 min
2 flash pulses		Fault, output Y2	30 min
3 flash pulses		Cross short	30 min
4 flash pulses		Overtemperature	30 min
5 flash pulses		Target error	0 min
6 flash pulses		Error, target combin.	0 min
7 flash pulses		Error, AD values	30 min
8 flash pulses		Fault, transmit. voltage	0 min
9 flash pulses		Channel error	0 min
Continuous red		Internal error	0 min

Safety controller

The programme of suitable safety controllers for these applications can be found on page 32 ff.

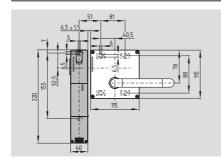
The achievable control category accord. to EN 954-1 safety controllers depends on the safety controller as well as the structure of the entire safety circuit.

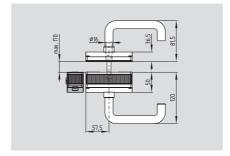

Connection

Wiring diagram for the device cable or the integrated connector

Cable colour	Wiring of the solenoid interlock with signal output	Wiring of the solenoid interlock with serial diagnosis	Pin configuration	
BN (brown)	24 V	24 V	Pin 1	
BU (blue)	GND	GND	Pin 3	
WH (white)	X1 Safety input 1	X1 Safety input 1	Pin 2	
VT (violet)	X2 Safety input 2	X2 Safety input 2	Pin 6	
BK (black)	Y1 Safety output 1	Y1 Safety output 1	Pin 4	
RD (red)	Y2 Safety output 2	Y2 Safety output 2	Pin 7	
GY (grey)	Signal output OUT	SD output	Pin 5	
PK (pink)	Input IN	SD input	Pin 8	
_	spare	spare	Pin 9	

2 1 8 70


AZ/AZM 200-B1-...



- Suitable for sliding guards
- Actuators with return spring
- Spring offset up to 5 mm
- With or without emergency exit (P0) possible

The safety switch/solenoid interlock and the actuator unit must be ordered separately!

AZ/AZM 200-B30-...

- Suitable for hinged guards
- One-hand emergency release, even in de-energised condition
- Easy and intuitive operation
- · No risk of injury from a protruding actuator
- No supplementary door handle required
- Does not protrude into the door opening
- Various handles available
- With or without emergency exit possible

The safety switch/solenoid interlock and the actuator unit must be ordered

separately!

Technical data

Standards: IEC/EN 60947-5-3 EN 954-1, IEC/EN 61508

Material:

Actuator unit: Glass-fibre reinforced thermo-

plastic, auto-extinguishing, fixing holes with metal washer

Emergency exit: Glass-fibre reinforced thermo-

plastic, auto-extinguishing, fixing holes with metal washer

Grivory B1-Enclosure: Door handle: anodized aluminium plastic coated aluminium Panic handle: Actuator:

zinc die-cast Mechanical life: ≥ 1 million operations F_{max}:

2000 N

Approvals

ϵ

Approvals

Ordering details

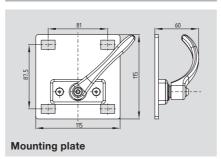
< €

AZ/AZM 200-B1-123

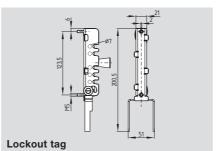
Ordering details

No.	Replace	Description
1	L R	Actuating direction left Actuating direction right
2	Т	Without door detection sensors With door detection sensors
3	P0	Without emergency exit With emergency exit

AZ/AZM 200-B30-①②A③④				
No.	Replace	Description		
1)	L	Door hinge		


NO.	неріасе	Description
1	L	Door hinge
		on left-hand side
	R	on right-hand side
		(view point towards
		the hazardous area)
2		Without
	T	With door
		detection sensors
3	G0	Without handle
	G1	Door handle
	G2	Rotary button
4		Without emergency exit
	P1	With emergency exit
	P20	With emergency exit
		incl. mounting plate

Accessoires AZ/AZM 200


System components

System components

Ordering details

Emergency exit, red
Door handle

Rotary button

Ordering details

P1 Mounting plate with

G1 emergency exit, metal

G2 Lockout tag

P20 SZ 200

Detailed technical information at: www.schmersal.com

SD gateway for PROFIBUS SD-I-DP-V0

To convert serial diagnostic signals to the PROFIBUS DP Protocol

Overview of the features:

Advantages of serial diagnosis

- Diagnostic lines of max. 31 safety components
- can be wired in series

 Series wiring of different devices possible (CSS 34, AZ 200 and AZM 200 under preparation)

 Diagnostic line is suitable for series wiring or
- Daisy-Chaining, thus reducing the cabling effort

 Bidirectional communication, i.e. reading operational data and unlocking of a solenoid interlock in the chain

Advantages of the integration into the Profibus system • PROFIBUS configuration • PROFIBUS DP slave

- GSD file for system configuration in S7-300/400 systems

Advantages for the communication set-up

- Automatic addressing of the safety switchgear through the serial input
 Automatic, continuous transmission of the operational data of each participant in the diagnostic chain. To this end, 1 input and output byte is automatically reserved in the S7 PLC.

 On request, other pre-signalling and error messages are loaded in the functional blocks of the PLC

- Advantages of the diagnostic in the PLC system
 Mapping of the operational data of the series-wired safety sensors and solenoid interlocks
- solenoid interlocks

 Fast and accurate error messages with detailed information about the malfunction
- Increased availability: pre-signalling of errors during machine operation, e.g. sagging of the safety guard

SD-Gateway for PROFIBUS SD-I-DP-V0

SD-I-DP-V0

- Profibus Gateway SD-I-DP-V0 to convert serial diagnostic signals to the PROFIBUS DP protocol
- Protection class IP 10 device for control cabinet mounting, for standard DIN rails

Technical data

Profibus interface:	9-pole SUB-D connector,
	default Profibus connection
Duete I	(DP-A, DP-B, 5V, GND) Profibus-DP –V0
Protocol:	
Chart sire viting devices	upwards compatible internal fuse to EN 60127
Short-circuiting device:	PolySwitch 0.5 A / 60 V
LED indications:	see table below
DIP switch 8-pole:	S1S7: addressing as Profibus slave
DIF SWITCH 6-pole.	S8: automatic addressing of the serial devices
Power supply SD bus:	+ 5 VDC
Rated operating voltage U _e :	24 VDC, -15 % / +20 %
Rated operating current I _a :	typ. 180 mA, max. 250 mA
Rated insulation voltage U _i :	32 V
Rated impulse withstand voltage U:	0.5 kV
Overvoltage category:	
Degree of pollution:	2
Storage temperature range:	- 25 °C + 85 °C, non-condensing
Operating temperature range:	- 5 °C + 55 °C, non-condensing
Humidity:	5% - 95%, non-condensing
Protection class:	IP 10
Resistance to vibration:	5 9 Hz / 3.5 mm (to IEC 60068-2-6)
	9 150 Hz / 1 g
Resistance to shock:	15 g / 11 ms (to IEC 60068-2-27)
EMC rating:	accord. to EN 61000-6-2 (2002)
accord. to EN 61000-4-2 (ESD):	4 kV / 8 kV
accord. to EN 61000-4-3:	10 V/m / 80% AM
accord. to EN 61000-4-4 (Burst):	2 kV DC supply / 1 kV PROFIBUS & SD-Interface
accord. to EN 61000-4-5 (Surge):	500 V DC supply / 1 kV PROFIBUS & SD-Interface
accord. to EN 61000-4-6:	10 V / 80 % AM
EMC interfering radiation:	to EN 61000-6-4 (2002)
Industrial interfering radiation:	37 dBμV/m

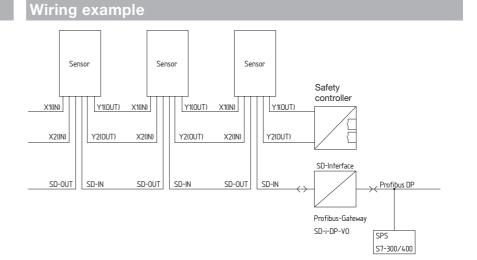
Electrical connection

SD	Connection for max. 31 devices
	in the serial diagnostics
24 V	+ 24 VDC power supply
	0 V, GND of the power supply and GND of
	the diagnostic line, 24 VDC power supply,
	approx. 300 mA, PELV power supply

Approvals

Ordering details

SD-I-DP-V0 SD Gateway for PROFIBUS


LED signals

"PB"	Continuous signal red	Profibus error
	Flashing signal	Profibus initialisation
"SD"	Continuous signal red	SD Gateway error
	Flashing signal	SD Gateway initialisation
"T"	Continuous signal yellow	SD initialisation error, teaching required
	Flashing signal	Initialization error SD device addresses, teaching required
"ON"	Continuous signal green	Power supply on

SD-Gateway for PROFIBUS SD-I-DP-V0

Note

- Serial diagnostics of series-wired safety sensors/solenoid interlocks
- Devices with serial diagnostic option: CSS 34
 AZ 200 (in preparation)
 AZM 200 (in preparation)

Note

Detailed functions, see programming and configuration manual of the SD Gateway

SCHMERSRL 29

Always there for you, the Online Catalogue at: www.schmersal.com

Safety controllers for electronic sensors and interlocks

Overview of the features:

Apart from the conventional safety controllers, the Schmersal Group also offers microprocessor-controlled safety technology.

Depending on the complexity and the number of safety circuits, integral solutions with safety monitoring modules, safety controls or safety field bus systems featuring many visualisation and diagnostic possibilities are available.

Safety controllers for electronic sensors and interlocks

Selection table

Туре	Operating voltage	Category EN 954-1	Sensor inputs	Stop category	Signal contacts	Signal outputs	Reset options	Refer to page
AES 1135	24 VDC	3	2P	1 x Stop 0	-	2 x 100 mA	Manual without edge detectionAutomatic	32
AES 1235	24 VDC	3	2P	2 x Stop 0	-	2 x 100 mA	Manual without edge detectionAutomatic	33
AZR 321AR	24 VDC	4	2P	3 x Stop 0 2 x Stop 1 130 s delay	-	1 x 200 mA	Manual with edge detectionAutomatic	34
SRB 324 ST	24 VDC	4	2P	3 x Stop 0 2 x Stop 1 130 s delay	1x 2A	3 x 100 mA	Manual with edge detectionAutomatic	36
SRB 301LC/B	24 VDC	4	2P	3 x Stop 0	1x 2A	-	Manual without edge detection Automatic	35
SRB-NA-R-C.22	24 VDC	4	2P	3 x Stop 0 2 x Stop 1	-	3 x 200 mA	Manual with edge detectionAutomatic	37

Further details about suitable safety controllers can be found at www.elan.de

Technical data

AES 1135

- Control Category 3 to EN 954-1
- Classification PDF-M to EN 60947-5-3 in combination with BNS safety sensors
- 1 enabling path
- Enable delay time can be modified
- Also suitable for monitoring of BNS range magnetic safety sensors
- Can be changed from NO/NC to NC/NC contact combination
- Cross-wire monitoring with NO-NC contact combination
- ISD Integral System Diagnostics
- Operating voltage 24 VDC
- Short-circuits proof additional transistor output
- Connection of input expander possible

Standards:	IEC/EN 60204-1, EN 60947-5-3, EN 954-1, BG-GS-ET-14, BG-GS-ET-20
Stop category	0
Control category:	3
Start conditions:	Automatic
Start-up test:	no
Enclosure:	glass-fibre reinforced thermoplastic, ventilated
Mounting:	snaps onto standard DIN rail to EN 50022
Connection:	screw terminals
Cable section:	max. 2.5 mm ² (incl. conductor ferrules)
Protection class:	IP 20 to EN 60529
U _e :	24 VDC ± 15%
l _e :	0.2 A
Monitored inputs	1 NC / 1 NO or 2 NC
Feedback circuit:	no
Input resistance:	approx. 4 kΩ to ground
Input signal "1":	10 30 VDC
Input signal "0":	0 2 VDC
Max. cable length:	1000 m of 0.75 mm ² conductor
Enabling contacts:	1 enabling path
Utilisation category:	AC-15, DC-13
I _e /U _e :	3 A / 230 VAC
	2 A / 24 VDC
Contact load capacity:	max. 250 VAC, max. 6 A (cos φ = 1)
Max. fuse rating:	6 A gG D-fuse
Signal output:	2 transistor outputs, Y1 + Y2 = max. 100 mA,
	p-type, short-circuit proof
Function display:	LED (ISD)
EMC rating:	conforming to EMC Directive
Max. switching frequency:	1 Hz
Overvoltage category:	II to DIN VDE 0110
Degree of pollution:	3 to DIN VDE 0110
Resistance to vibration:	10 55 Hz / amplitude 0.35 mm, ± 15 %
Resistance to shock:	30 g / 11 ms
Ambient temperature:	0 °C + 55 °C
Storage and transport temperature:	−25 °C + 70 °C
Dimensions:	22.5 x 100 x 121 mm
Note:	Inductive loads (e.g. contactors, relays, etc.) are
	to be suppressed by means of a suitable circuit.

Approvals

in preparation

Ordering details

AES 1135

Function table

Additional transistor output:

Y2

Function / Switching condition: Authorized operation, enabling paths closed No authorized operation, enabling paths open

The following faults are recognised by safety monitoring module and indicated by means of ISD

- Failure of door contacts to open or close
- Cross-wire or short-circuit monitoring of the switch connections
- Interruption of the switch connections
- Failure of the safety relay to pull-in or drop-out
- Faults on the input circuits or on the relay control of the safety monitoring module

Technical data

AES 1235

- Control Category 3 to EN 954-1
- Classification PDF-M to EN 60947-5-3 in combination with BNS safety sensors
- 2 enabling paths
- Enable delay time can be modified
- Also suitable for monitoring of BNS range magnetic safety sensors
- Cross-wire monitoring with NO-NC contact combination
- ISD Integral System Diagnostics
- Short-circuits proof additional transistor output
- Feedback circuit to monitor external relays
- Start function
- Operating voltage 24 VDC
- Can be changed from NO/NC to NC/NC contact combination
- Connection of input expander possible
- · Additional contacts by means of output expander

Standards:	IEC/EN 60204-1, EN 60947-5-3, EN 954-1,
	BG-GS-ET-14, BG-GS-ET-20
Stop category	0
Control category:	3
Start conditions:	automatic or start button
Start-up test:	no
Enclosure:	glass-fibre reinforced thermoplastic, ventilated
Mounting:	snaps onto standard DIN rail to EN 50022
Connection:	screw terminals
Cable section:	max. 2.5 mm ² (incl. conductor ferrules)
Protection class:	IP 20 to EN 60529
U _e :	24 VDC ± 15%
l _e :	0.2 A
Monitored inputs	1 NC / 1 NO or 2 NC
Feedback circuit:	yes
Input resistance:	approx. 4 kΩ to ground
Input signal "1":	10 30 VDC
Input signal "0":	0 2 VDC
Max. cable length:	1000 m of 0.75 mm ² conductor
Enabling contacts:	2 enabling paths
Utilisation category:	AC-15, DC-13
I _e /U _e :	3 A / 230 VAC
	2 A / 24 VDC
Contact load capacity:	max. 250 VAC, max. 6 A (cos φ = 1)
Max. fuse rating:	6 A gG D-fuse
Signal output:	2 transistor outputs, Y1 + Y2 = max. 100 mA,
	p-type, short-circuit proof
Function display:	LED (ISD)
EMC rating:	conforming to EMC Directive
Max. switching frequency:	1 Hz
Overvoltage category:	II to DIN VDE 0110
Degree of pollution:	3 to DIN VDE 0110
Resistance to vibration:	10 55 Hz / amplitude 0.35 mm, ± 15 %
Resistance to shock:	30 g / 11 ms
Ambient temperature:	0 °C + 55 °C
Storage and transport temperature:	− 25 °C + 70 °C
Dimensions:	22.5 x 100 x 121 mm
Note:	Inductive loads (e.g. contactors, relays, etc.) are

Approvals

in preparation

Ordering details

AES 1235

Function table

Additional transistor output:

Y2

Function / Switching condition: Authorized operation, enabling paths closed No authorized operation, enabling paths open

to be suppressed by means of a suitable circuit.

The following faults are registered by the safety monitoring modules and indicated by ISD

- Failure of door contacts to open or close
- Cross-wire or short-circuit monitoring of the switch connections
- Interruption of the switch connections
- Failure of the safety relay to pull-in or drop-out
- Fault on the input circuits or the relay control circuits of the safety monitoring module

AZR 321 AR

- Suitable for signal processing of potentialfree outputs, e.g. emergency-stop command devices, interlocking equipment etc.
- Suitable for signal processing of outputs connected to potentials (AOPD's)
- 1 or 2 channel control
- 3 enabling paths, Stop 0
 2 enabling paths, Stop 1, adjustable up to 30 s
- Optionally cross-wire detection
- Manual reset with edge detection
- Automatic reset function
- Control Category 4 to EN 954-1
- Green LED indications for relay K1, K2, K3, K4, supply voltage U_B and internal fuse U_i

Technical data	
Standards:	IEC/EN 60204-1, EN 954-1, BG-GS-ET-20
Stop category	3x Stop 0; 2 x Stop 1
Control category:	4
Start conditions:	reset button without edge detection, auto start
Enclosure:	glass-fibre reinforced thermoplastic
Connection:	plug-in, screw terminals
Cable section:	min. 0.6 mm ² , max. 2.5 mm ² solid
	or multi-strand lead (incl. conductor ferrules)
U _e :	24 VDC -15% / +20%, residual ripple max. 10%
	24 VAC -15% / +6%
Frequency range:	50/60 Hz (on AC operational voltage)
l _e :	max. 0.11 A
Protection class:	terminals IP 20
	enclosure IP 40
	to EN 60529
Power consumption:	max. 4.0 VA plus additional contact 66
Max. fuse rating:	Glass fuse F1, tripping current 0.5 A
Monitored inputs	2 channels
Feedback circuit:	yes
Drive circuits:	S11/S12, S21/S22: max. 28 VDC
Enabling contacts:	3 enabling paths
Utilisation category:	AC-15, DC-13
Switching capacity:	enabling paths: 4 A/230 VAC, 6 A/24 VDC
Fuse rating:	enabling paths: 4 A gG D-fuse
Max. switching frequency:	5 Hz
Contact material:	AgNi, AgSnO, self-cleaning, positive action
Contact resistance:	max. 100 m Ω in new condition
Pull-in delay:	≤ 30 ms
Drop-out delay:	≤ 60 ms
Air clearances and creepage distances:	DIN VDE 0110-1 (04.97), 4 kV/2
Overvoltage category:	III to DIN VDE 0110
Degree of pollution:	2 to DIN VDE 0110
Ambient temperature:	−25 °C + 45 °C
	(Derating curve on request)
Mechanical life:	10 million operations
Function indication:	3 LED
Weight:	480 g
Dimensions:	83 x 45 x 140 mm

Approvals

 ϵ

Ordering details

AZR 321 AR

Function indication

The integrated LED's indicate the following operating states.

- Position relay K1
- Position relay K2
- Position relay K3
- Position relay K4
- Supply voltage U_B
- Internal operating voltage Ui

SRB 301 LC/B

- Signal processing of potential-free outputs, e.g. emergency stop command devices, interlocking devices, etc.
- Signal processing of outputs of safety magnetic switches (built-in current and voltage limitation for this purpose)
- Restrictedly suitable for signal processing (no reset with edge detection) of outputs connected to potentials (AOPD's),
 e.g. safety light grids/curtains
- 1 or 2 channel control
- 3 enabling paths, Stop 0
- 1 indication contact (NC)
- Manual reset without edge detection
- Automatic reset function
- Green LED indications for relay K1, K2, supply voltage U_B and internal fuse U_i
- Control Category 4 to EN 954-1

Technical data	
Technical data	
Standards:	IEC/EN 60204-1, EN 954-1, BG-GS-ET-20
Stop category	3x Stop 0
Control category:	4
Start conditions:	reset button without edge detection, auto star
Enclosure:	glass-fibre reinforced thermoplastic
Connection:	self-opening screw terminals
Cable section:	min. 0.2 mm ² , max. 2.5 mm ² solic
	or multi-strand lead (incl. conductor ferrules
U _e :	24 VDC -15%/+20%, residual ripple max. 10%
	24 VAC -15%/+10%
Frequency range:	50/60 Hz (on AC operational voltage
l _e :	max. 0.08 A
Protection class:	terminals IP 20
	enclosure IP 40
	to EN 60529
Power consumption:	max. 1.9 VA, 1.7 W
Max. fuse rating:	Glass fuse F1, tripping current 1.25 A
Monitored inputs	1 or 2 channels
Feedback circuit:	yes
Drive circuits:	S11/S12, S21/S22: max. 28 VDC
Enabling contacts:	3 enabling paths
Utilisation category:	AC-15, DC-13
Switching capacity:	enabling paths: 6 A/230 VAC, 6 A/24 VDC
Fuse rating:	enabling paths: 6 A gG D-fuse
Max. switching frequency:	5 Hz
Signal contacts:	1 NC contac
Switching capacity:	Indicating contact: 2 A/24 VDC
Contact material:	AgNi, AgSnO, self-cleaning, positive action
Contact resistance:	max. 100 m Ω in new condition
Pull-in delay:	≤ 30 ms
	≤ 30 ms (Auto-start/Reset button
Drop-out delay:	≤ 50 ms
Air clearances and creepage distances:	DIN VDE 0110-1 (04.97), 4 kV/2
Overvoltage category:	III to DIN VDE 0110
Degree of pollution:	2 to DIN VDE 0110
Ambient temperature:	− 25 °C + 45 °C
•	(Derating curve on request
Mechanical life:	10 million operations
Function display:	4 LEC
Weight:	230 c
Dimensions:	22.5 x 100 x 121 mm

Approvals

Ordering details

SRB 301 LC/B

Function indication

The integrated LED's indicate the following operational states.

- Position relay K1
- Position relay K2
- Supply voltage U_B
- Internal operating voltage Ui

Safety monitoring module for electronic sensors and interlocks

Technical data

SRB 324 ST

- Suitable for signal processing of potentialfree outputs, e.g. emergency-stop command devices, interlocking equipment etc.
- Suitable for signal processing of outputs connected to potentials (AOPD's),
 e.g. safety light grids/curtains
- 1 or 2 channel control
- 5 enabling paths, two delayed 1...30 s
- 3 signal contacts (transistor output)
- With hybrid fuse
- Optionally
- Cross-wire detection
- Automatic reset function
- Manual reset with edge detection in fail-safe circuit
- Control Category 4 to EN 954-1
- Green LED indications for relay K1, K2, K3, K4, supply voltage U_B and internal fuse U_i

Standards:	IEC/EN 60204-1, EN 954-1, BG-GS-ET-20	
Stop category	3x Stop 0, 2x Stop 1 (1 30 s delayed)	
Control category:	4	
Start conditions:	start, reset button (trailing edge), autostart	
Enclosure:	glass-fibre reinforced thermoplastic	
Connection:	plug-in, screw terminals	
Cable section:	min. 0.2 mm ² , max. 2.5 mm ² solid	
	or multi-strand lead (incl. conductor ferrules)	
U _e :	24 VDC -15%/+20%, residual ripple max. 10%	
	24 VAC -15%/+10%	
Frequency range:	50/60 Hz (on AC operational voltage)	
l _e :	max. 0.2 A (DC version),	
	plus signal outputs Y1-Y3	
Protection class:	terminals IP 20	
	enclosure IP 40	
	to EN 60529	
Power consumption:	max. 7.8 VA; 4.8 W	
	plus signal outputs Y1-Y3	
Max. fuse rating:	internal electronic trip F1, tripping current > 0.5 A,	
	reset after disconnection of supply voltage	
Monitored inputs	1 or 2 channels	
Feedback circuit:	yes	
Drive circuits:	S11/S12, S21/S22: max. 28 VDC	
Enabling contacts:	5 enabling paths	
Utilisation category:	AC-15, DC-13	
Switching capacity:	enabling paths "Stop 0": 6 A/230 VAC, 6 A/24 VDC	
	enabling paths "Stop 1": 3 A/230 VAC, 2 A/24 VDC	
Fuse rating:	enabling paths: 6 A gG D-fuse	
Auxiliary contacts:	61/62:	
Switching capacity:	auxiliary contacts: 2 A/24 VDC	
Signal output:	Y1 - Y3: 8 transistor outputs 100 mA total,	
	short-circuit proof	
Max. switching frequency:	5 Hz	
Contact material:	AgNi, AgSnO, self-cleaning, positive action	
Contact resistance:	max. 100 m Ω in new condition	
Pull-in delay:	≤ 30 ms	

≤ 30 ms

6 LED

480 g

DIN VDE 0110-1 (04.97), 4 kV/2

III to DIN VDE 0110 2 to DIN VDE 0110

 $-25~^{\circ}\text{C}$... $+45~^{\circ}\text{C}$ (Derating curve on request)

10 million operations

45 x 100 x 121 mm

Approvals

Drop-out delay:

Mechanical life:

Weight:

Dimensions:

Function display:

Overvoltage category:

Degree of pollution:
Ambient temperature:

Air clearances and creepage distances:

Ordering details

SRB 324 ST

Function indication

The integrated LED's indicate the following operating states.

- Position relay K1
- Position relay K2
- Position relay K3
- Position relay K4
- Supply voltage U_B
- Internal operating voltage U_i

Safety monitoring module for electronic sensors and interlocks

SRB-NA-RC-22

- Relay outputs 3 NO and 1 diagnostic output with normally closed function (diagnostic outputs must not be used in safety circuits)
- Feedback circuit / Start circuit
- 5 enabling paths
- Possibility to connect an emergency stop switch or a guard monitoring device
- Green LED indications for relay K1, K2, supply voltage U_B and internal fuse U_i
- 45 mm enclosure in thermoplastic to UL-94-V-0, red RAL 3000
- Top hat section rail mounting DIN EN 50 022

Ctandayda	IEC/EN 60004 1 EN 054 1 DO 00 ET 0	
Standards:	IEC/EN 60204-1, EN 954-1, BG-GS-ET-2	
Stop category	3x Stop 0; 2 x Stop 1	
Control category:		
Start conditions:	reset button without edge detection, auto star	
Enclosure:	glass-fibre reinforced thermoplastic	
Connection:	plug-in, screw terminal	
Cable section:	min. 0.6 mm², max. 2.5 mm² soli	
	or multi-strand lead (incl. conductor ferrule	
U _e :	24 VDC -15%/+20%, residual ripple max. 10%	
	24 VAC -15%/+69	
Frequency range:	50/60 Hz (on AC operational voltage	
l _e :	max. 0.11 /	
Protection class:	terminals IP 2	
	enclosure IP 4	
	to EN 6052	
Power consumption:	max. 4.0 VA, plus signal outputs L6.	
Max. fuse rating:	Glass fuse F1, tripping current 0.5	
Monitored inputs	2 channel	
Feedback circuit:	ye	
Drive circuits:	S11/S12, S21/S22: max. 28 VD0	
Enabling contacts:	5 enabling path	
Utilisation category:	AC-15, DC-1	
Switching capacity:	230 VAC, 4 A ohmic (inductive in cas	
	of appropriate protective wiring	
	NO contact 43/44, 53/5	
	DC-13: 24 VDC/2	
	AC-15: 230 VAC/3	
Auxiliary contacts:	L62: max. 500 m/	
Fuse rating:	enabling paths: 4 A gG D-fus	
Max. switching frequency:	5 H	
Contact material:	AgNi, AgSnO, self-cleaning, positive actio	
Contact resistance:	max. 100 m Ω in new conditio	
Pull-in delay:	≤ 30 m	
Drop-out delay:	≤ 60 m	
Air clearances and creepage distances:	DIN VDE 0110-1 (04.97), 4 kV/	
Overvoltage category:	III to DIN VDE 011	
Degree of pollution:	2 to DIN VDE 011	
Ambient temperature:	– 25 °C + 45 °C	
•	(Derating curve on reques	
Mechanical life:	10 million operation	
Function indication:	3 LEI	
Weight:	480	
Dimensions:	83 x 45 x 140 mr	

Approvals

 ϵ

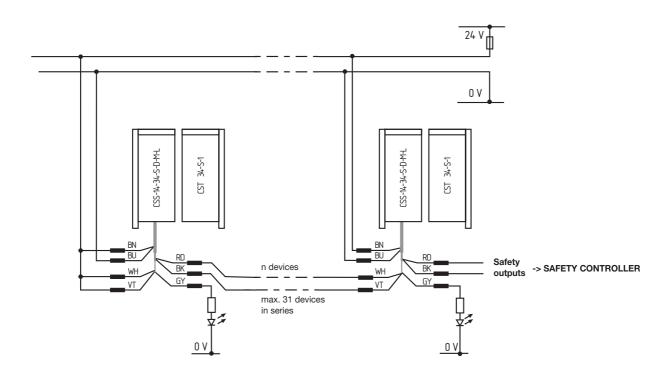
Ordering details

SRB-NA-RC-22

Function indication

The integrated LED's indicate the following operating states.

- Position relay K1
- Position relay K2
- \bullet Supply voltage $U_{\text{\footnotesize B}}$
- Internal operating voltage Ui


Wiring schematics

Series wiring

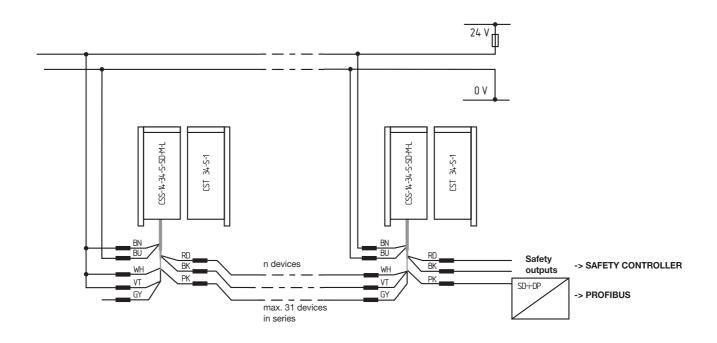
Circuit diagrams for various electronic sensors

Series wiring of the CSS 34 with signal output

The voltage is supplied to both safety inputs of the last sensor of the chain (starting from the safety controller). The safety outputs of the first sensor are wired to the safety controller.

Product selection

This example applies for all sensor types with conventional signal output


Safety sensor	Active face	Cable
CSS - 14 - 34 - S - D - M - L CSS - 12 - 34 - V - D - M - L	on the side on top	8 wire 8 wire
Safety sensor	Active face	Integrated connector
CSS - 14 - 34 - S - D - M - ST CSS - 12 - 34 - V - D - M - ST	on the side on top	8 poles 8 poles
Actuator	Active face	
CST - 34 - S - 1 CST - 34 - V - 1	on the side on top	

Description

Wiring diagram for the device cable or the integrated connector

Cable colour	Wiring of the CSS 34 sensor with signal output	Pin configuration	
BN (brown)	A1 Ue	Pin 1	
BU (blue)	A2 GND	Pin 3	
WH (white)	X1 Safety input 1	Pin 2	
VT (violet)	X2 Safety input 2	Pin 6	
BK (black)	Y1 Safety output 1	Pin 4	
RD (red)	Y2 Safety output 2	Pin 7	
GY (grey)	Signal output	Pin 5	
PK (pink)	Without function	Pin 8	

Series wiring of the CSS 34 with serial diagnosis

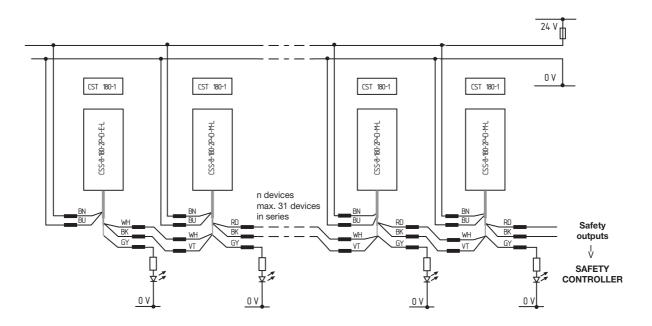
The safety inputs of the first sensor are wired to the safety controller.

The serial diagnostic gateway is connected to the serial diagnostic input of the first sensor.

Product selection

This example applies for all sensor types with serial diagnosis

Safety sensor	Active face	Cable
CSS - 14 - 34 - S - SD - M - L CSS - 12 - 34 - V - SD - M - L	on the side on top	8 wire 8 wire
Safety sensor	Active face	Integrated connector
CSS - 14 - 34 - S - SD - M - ST CSS - 12 - 34 - V - SD - M - ST	on the side on top	8 poles 8 poles
Actuator	Active face	
CST - 34 - S - 1 CST - 34 - V - 1	on the side on top	


Description

Wiring diagram for the device cable or the integrated connector

Cable colour	Wiring of the CSS 34 sensor with serial diagnosis	Pin configuration
BN (brown)	A1 Ue	Pin 1
BU (blue)	A2 GND	Pin 3
WH (white)	X1 Safety input 1	Pin 2
VT (violet)	X2 Safety input 2	Pin 6
BK (black)	Y1 Safety output 1	Pin 4
RD (red)	Y2 Safety output 2	Pin 7
GY (grey)	SD output	Pin 5
PK (pink)	SD input	Pin 8

Series wiring of the CSS 180 with the same wire for safety inputs and outputs

With end device of a sensor chain

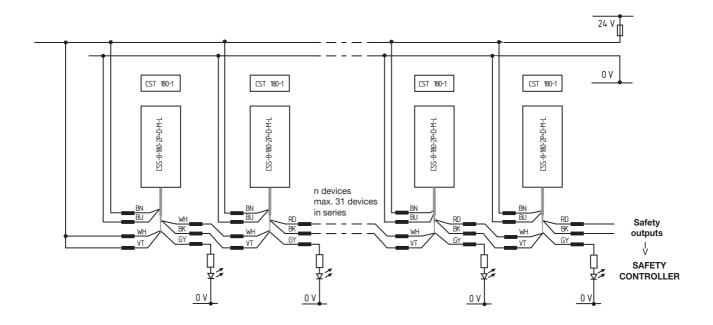
The first end sensor CSS-8-180...-E-L has no safety inputs

Product selection

This example requires E and M type sensors

Safety sensor	Connection
CSS - 8 - 180 - 2P - E - L	Pre-wired cable, 4 wire
CSS - 8 - 180 - 2P - E - LST	Pre-wired cable, 4 wire with connector M12 x 1, 4 poles
CSS - 8 - 180 - 2P + D - E - L	With diagnostic output, pre-wired cable 5 wire
CSS - 8 - 180 - 2P + D - E - LST	With diagnostic output, pre-wired cable 5 wire with connector M12 x1, 5 poles
CSS - 8 - 180 - 2P + D -M - L	With diagnostic output, pre-wired cable 7 wire
CSS - 8 - 180 - 2P + D -M - LST	With diagnostic output, pre-wired cable 7 wire, with connector M12 x 1, 8 poles

Description


Wiring diagram for the CSS 180 safety sensors with an "E" in the ordering code.

Cable colour	Wiring	Pin configuration
BN (brown) BU (blue) BK (black) WH (white)	A1 Ue A2 GND Y1 Safety output 1 Y2 Safety output 2	Pin 1 Pin 3 Pin 4 Pin 2
Only 5 pole version	on:	
GY (grey)	Signal output (option)	Pin 5
BN BN BN WH		

Wiring diagram for the M-type sensors (multifunctional connection), see next page

Series wiring of the CSS 180 with the same wire for safety inputs and outputs

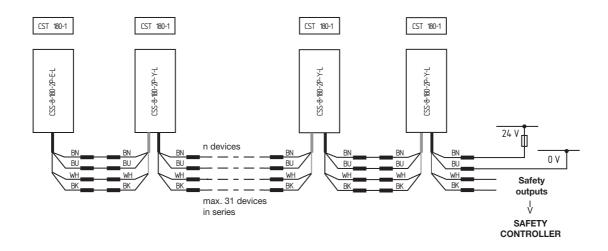
Without end device of a sensor chain

The safety inputs of the last sensor (M-type) starting from the safety controller are also used for the series wiring. The voltage for the safety channels is supplied here.

Product selection

This example exclusively requires M-type sensors Single device or end device of a sensor chain

Safety sensor	Connection
CSS - 8 - 180 - 2P + D -M - L	With diagnostic output, pre-wired cable 7 wire
CSS - 8 - 180 - 2P + D -M - LST	With diagnostic output, pre-wired cable 7 wire , with connector M12 x 1, 8 poles


Description

Wiring diagram for the CSS 180 safety sensors with an "M" in the ordering code (device with multifunctional connection)

Cable colour	Wiring	Pin configuration
BN (brown) BU (blue) VT (violet) WH (white) BK (black) RD (red) GY (grey)	A1 Ue A2 GND X1 Safety input 1 X2 Safety input 2 Y1 Safety output 1 Y2 Safety output 2 Signal output spare	Pin 1 Pin 3 Pin 6 Pin 2 Pin 4 Pin 7 Pin 5 Pin 8
BN B		06 5 40 07 09 30 1 1 2 2

Series wiring of the CSS 180 with different wire for safety inputs and outputs

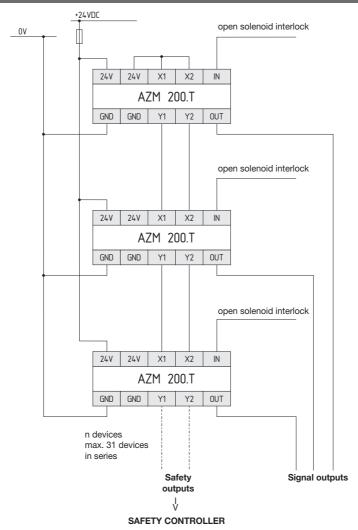
without signal output

The first CSS-8-180-...-E-L end sensor has no safety inputs.

Product selection

This example applies for the CSS 180 safety sensors with a "Y" in the ordering code.

Safety sensor	Connection	
CSS - 8 - 180 - 2P - Y - L	2 cables, 4 wire	
CSS - 8 - 180 - 2P - Y -LST	2 cables with connetor male / female, M12 x 1, 4 poles	


Description

Wiring diagram for the CSS 180 safety sensors with a "Y" in the ordering code (series-wiring device)

Cable colour	Wiring of the grey cable (IN)	black cable (OUT)	Pin configuration
BN (brown)	A1 Ue	A1 Ue	Pin 1
BU (blue)	A2 GND	A2 GND	Pin 3
BK (black)	X1 Safety	Y1 Safety	Pin 4
	input 1	output 1	
WH (white)	X2 Safety	Y2 Safety	Pin 2
	input 2	output 2	
BN	<u>, BN</u>		(3 4 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BU BK	BK BK		Connector

female male

Series wiring of the electronic solenoid interlock AZM 200

With the represented spring-to-lock principle, the solenoid is energized to enable the opening. With the alternative power-to-lock principle, the solenoid must be energized to keep the device in closed condition.

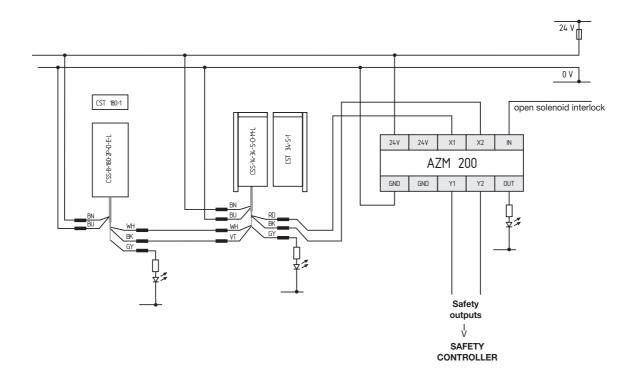
Product selection

This example applies to the AZM 200 electronic solenoid interlock

Solenoid interlock	Description
AZM 2001P2P AZM 2001P2Pa	1 signal output with spring to lock principle 1 signal output with power to lock principle

Description

Wiring diagram for the AZM 200 electronic solenoid interlock


Clamp	Wiring of AZM 200	Pin configuration
24V	Operating voltage 24VDC	Pin 1
GND	Ground	Pin 3
X1	Safety input 1	Pin 2
X2	Safety input 2	Pin 6
Y1	Safety output 1	Pin 4
Y2	Safety output 2	Pin 7
OUT	Signal output	Pin 5
IN	Solenoid control	Pin 8
_	spare	Pin 9

Wiring diagram for the AZ 200 electronic safety switch with separate actuator

Identical to the previous wiring diagram for the AZM 200, only the "solenoid interlock IN" control becomes inoperative

Series wiring of various sensors and interlocks with signal output

The CSS 180, CSS 34, AZ 200 and AZM 200 can be wired in series in any desired combination. For the CSS 180, 16 devices can be wired in series, for the other devices, max. 31 devices can be wired in series. If the CSS 180 is used in a "mixed" series wiring, the number of series-wired devices is limited to 16.

Product selection

This example applies to the following series-wired devices

Description

Wiring diagram of the represented devices: see previous pages:

Device	Description	
CSS - 8 - 180 - 2P + D - E - L with CST - 180 - 1	With diagnostic output, pre-wired cable 5 wire Actuator	Wiring diagram of the CSS 180: see page 42
CSS - 14 - 34 - S - D - M - L with CST - 34 - S - 1	Position of the active face: on side, pre-wired cable 7 wire Actuator, on the side	Wiring diagram of the CSS 34: see page 40
AZM 2001P2Pa	1 signal output with power to lock principle	Wiring diagram of the AZM 200: see page 45 and 49 ff.

Circuit examples

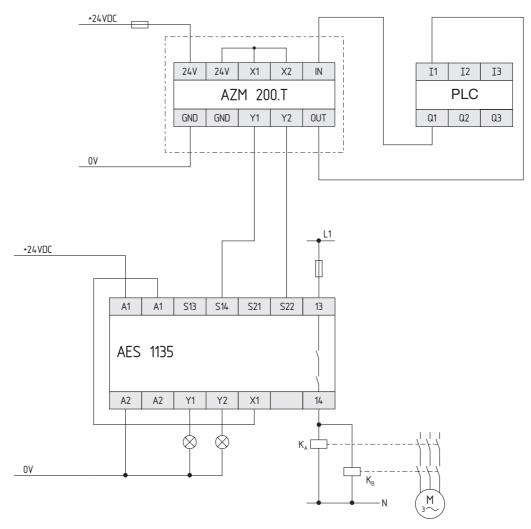
Connection of sensors and interlocks to various safety controllers

Safety outputs Y1/Y2 of CSS 180 and CSS 34

The safety outputs Y1/Y2 of the CSS 180 and CSS 34 safety sensors must be connected to the safety controller in the following way

Sensors	Safety output 1	Safety output 2
CSS 180	Y1	Y2
CSS 34	Y1	Y2
to be connected to	\	\

Safety controller	Safety channel 1	Safety channel 2	Feedback/start contact connection	Start contact	Remarks	Refer to page
AES 1135	S 14	S 22	-	_	A1 - X2	49
AES 1235	S 14	S 22	A1 - X1	-	A1 - X2	50
AZR 321 AR	S 12	S 22	T33 - T44	-	Qs=0	51
SRB 301 LC/B	S 12	S 22	X1 - X2	_	_	52
SRB 324 ST	S 12	S 22	X1 - X2	X3 - X4	_	53
SRB-NA-RC.22	S 1	S 2	X2.2 - X1	-	Qs=0	54


Notes:

GND of the sensor power supply and the safety controller must be bridged.

The safety outputs of the AZM 200 solenoid interlock are wired in the same way. The following drawings therefore are also applying for the wiring of the sensors.

48

Connection of an interlock AZM 200 to the safety controller AES 1135

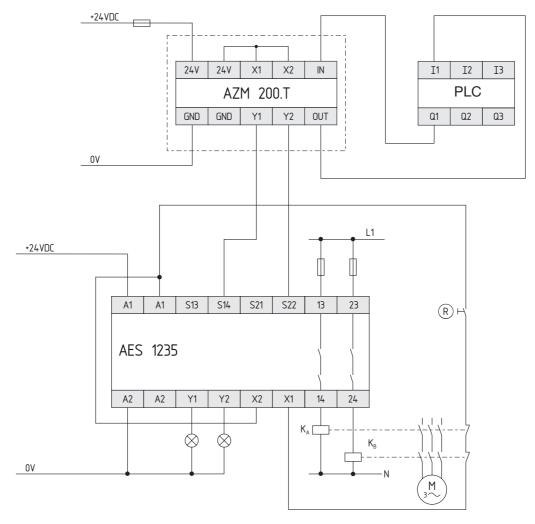
The wiring example is shown with safety guards closed and in de-energized condition. AES 1135 requires a bridge between A1 and X1 to work with two NC contacts (AZM 200)

Product selection

This example applies for the following series-wired devices.

Device	Remarks
AZ 2001P2P	Series wiring possible IN = spare
AZM 2001P2P	Series wiring possible IN = Solenoid control
AZ 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3
AZM 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3

Description


Wiring diagram of the AZ and AZM 200

Clamp	Wiring of AZM 200	Pin configuration
24V	Operating voltage 24VDC	Pin 1
GND	Ground	Pin 3
X1 / OUT2	Safety input 1 or signal output 2	Pin 2
X2 / OUT3	Safety input 2 or signal output 3	Pin 6
Y1	Safety output 1	Pin 4
Y2	Safety output 2	Pin 7
OUT	Signal output 1	Pin 5 (•2 •9 7
IN	Solenoid control	Pin 8

The wiring diagram for the AZ 200 is identical to the AZM 200's, only the "solenoid interlock IN" control becomes inoperative.

The CSS 180 and CSS 34 are connected to the safety controller in the same way. The function assignment to the wire colours of the CSS safety sensor is included in the CSS device description.

Connection of an interlock AZM 200 to the safety controller AES 1235

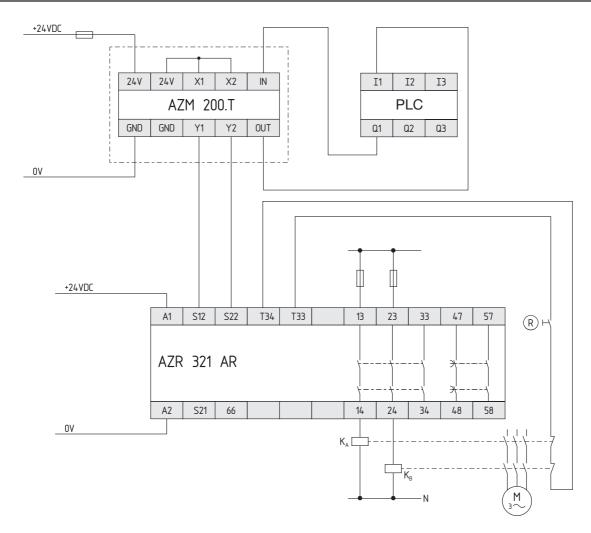
The wiring example is shown with safety guards closed and in de-energized condition. AES 1235 requires a bridge between A1 and X1 to work with two NC contacts (AZM 200)

Product selection

This example applies for the following series-wired devices.

Device	Remarks
AZ 2001P2P	Series wiring possible IN = spare
AZM 2001P2P	Series wiring possible IN = Solenoid control
AZ 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3
AZM 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3

Description


Wiring diagram of the AZ and AZM 200

Clamp	Wiring of AZM 200	Pin configuration
24V	Operating voltage 24VDC	Pin 1
GND	Ground	Pin 3
X1 / OUT2	Safety input 1 or signal output 2	Pin 2
X2 / OUT3	Safety input 2 or signal output 3	Pin 6
Y1	Safety output 1	Pin 4
Y2	Safety output 2	Pin 7
OUT	Signal output 1	Pin 5 (•2 . •9 7
IN	Solenoid control	Pin 8

The wiring diagram for the AZ 200 is identical to the AZM 200's, only the "solenoid interlock IN" control becomes inoperative.

The CSS 180 and CSS 34 are connected to the safety controller in the same way. The function assignment to the wire colours of the CSS safety sensor is included in the CSS device description.

Connection of an interlock AZM 200 to the safety controller AZR 321 AR

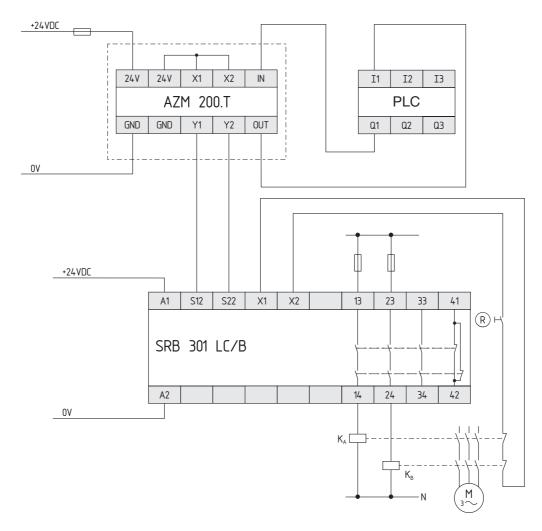
The wiring example is shown with safety guards closed and in de-energized condition. Cross-wire detection must be deactivated on the rear side of the safety controller.

Product selection

This example applies for the following series-wired devices.

Device	Remarks
AZ 2001P2P	Series wiring possible IN = spare
AZM 2001P2P	Series wiring possible IN = Solenoid control
AZ 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3
AZM 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3

Description


Wiring diagram of the AZ and AZM 200

Clamp	Wiring of AZM 200	Pin configuration
24V	Operating voltage 24VDC	Pin 1
GND	Ground	Pin 3
X1 / OUT2	Safety input 1 or signal output 2	Pin 2
X2 / OUT3	Safety input 2 or signal output 3	Pin 6
Y1	Safety output 1	Pin 4
Y2	Safety output 2	Pin 7
OUT	Signal output 1	Pin 5
IN	Solenoid control	Pin 8

The wiring diagram for the AZ 200 is identical to the AZM 200's, only the "solenoid interlock IN" control becomes inoperative.

The CSS 180 and CSS 34 are connected to the safety controller in the same way. The function assignment to the wire colours of the CSS safety sensor is included in the CSS device description.

Connection of an interlock AZM 200 to the safety controller SRB 301 LC/B

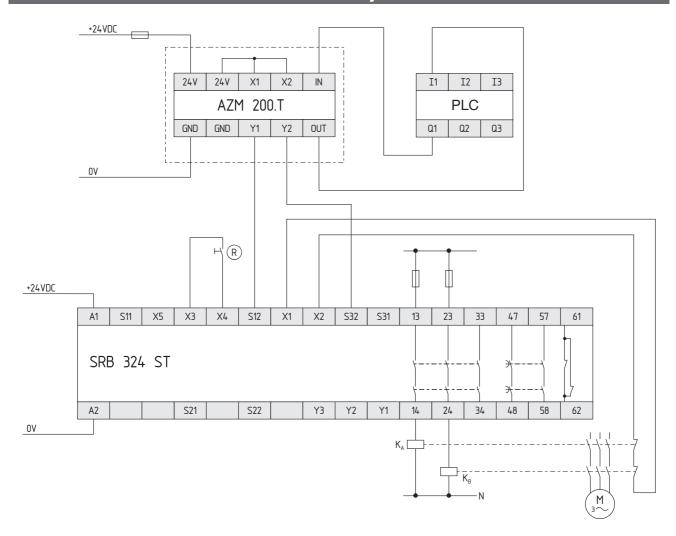
The wiring example is shown with safety guards closed and in de-energized condition.

Product selection

This example applies for the following series-wired devices.

Device	Remarks
AZ 2001P2P	Series wiring possible IN = spare
AZM 2001P2P	Series wiring possible IN = Solenoid control
AZ 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3
AZM 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3

Description


Wiring diagram of the AZ and AZM 200

Clamp	Wiring of AZM 200	Pin configuration
24V	Operating voltage 24VDC	Pin 1
GND	Ground	Pin 3
X1 / OUT2	Safety input 1 or signal output 2	Pin 2
X2 / OUT3	Safety input 2 or signal output 3	Pin 6
Y1	Safety output 1	Pin 4
Y2	Safety output 2	Pin 7
OUT	Signal output 1	Pin 5 (•2 •9 7•)
IN	Solenoid control	Pin 8

The wiring diagram for the AZ 200 is identical to the AZM 200's, only the "solenoid interlock IN" control becomes inoperative.

The CSS 180 and CSS 34 are connected to the safety controller in the same way. The function assignment to the wire colours of the CSS safety sensor is included in the CSS device description.

Connection of an interlock AZM 200 to the safety controller SRB 324 ST

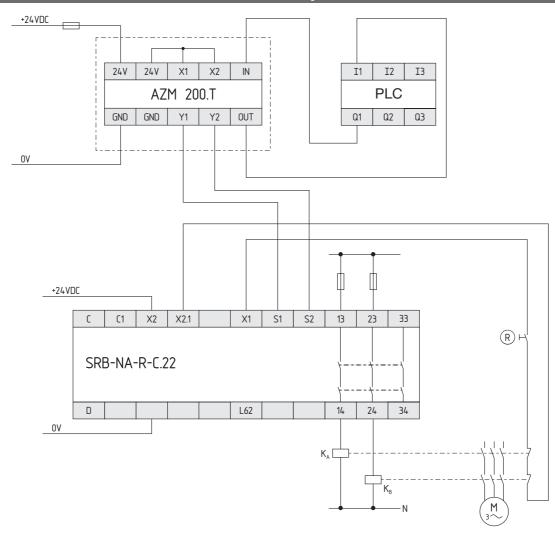
The wiring example is shown with safety guards closed and in de-energized condition.

Product selection

This example applies for the following series-wired devices.

Device	Remarks
AZ 2001P2P	Series wiring possible IN = spare
AZM 2001P2P	Series wiring possible IN = Solenoid control
AZ 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3
AZM 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3

Description


Wiring diagram of the AZ and AZM 200

Clamp	Wiring of AZM 200	Pin configuration
24V	Operating voltage 24VDC	Pin 1
GND	Ground	Pin 3
X1 / OUT2	Safety input 1 or signal output 2	Pin 2
X2 / OUT3	Safety input 2 or signal output 3	Pin 6
Y1	Safety output 1	Pin 4
Y2	Safety output 2	Pin 7
OUT	Signal output 1	Pin 5 (•2 •9 7
IN	Solenoid control	Pin 8

The wiring diagram for the AZ 200 is identical to the AZM 200's, only the "solenoid interlock IN" control becomes inoperative.

The CSS 180 and CSS 34 are connected to the safety controller in the same way. The function assignment to the wire colours of the CSS safety sensor is included in the CSS device description.

Connection of an interlock AZM 200 to the safety controller SRB-NA-RC-22

The wiring example is shown with safety guards closed and in de-energized condition. Cross-wire detection must be deactivated on the rear side of the evaluation module.

Product selection

This example applies for the following series-wired devices.

Device	Remarks
AZ 2001P2P	Series wiring possible IN = spare
AZM 2001P2P	Series wiring possible IN = Solenoid control
AZ 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3
AZM 2003P2P	Series wiring not possible, X1= OUT2; X2= OUT3

Description

Wiring diagram of the AZ and AZM 200

Clamp	Wiring of AZM 200	Pin configuration
24V	Operating voltage 24VDC	Pin 1
GND	Ground	Pin 3
X1 / OUT2	Safety input 1 or signal output 2	Pin 2
X2 / OUT3	Safety input 2 or signal output 3	Pin 6
Y1	Safety output 1	Pin 4
Y2	Safety output 2	Pin 7 (34 5%)
OUT	Signal output 1	Pin 5 (•2, •9, 7•
IN	Solenoid control	Pin 8

The wiring diagram for the AZ 200 is identical to the AZM 200's, only the "solenoid interlock IN" control becomes inoperative.

The CSS 180 and CSS 34 are connected to the safety controller in the same way. The function assignment to the wire colours of the CSS safety sensor is included in the CSS device description.

www.schmersal.com

You will also find detailed information regarding our product variety on our website: www. schmersal.com.

Online documentation in six languages

The online catalogue for our customers is permanently updated. The Main catalogue can be consulted on the Internet in as much as six languages.

The technical data of our entire product range are available 24/7, always upto-date. The declarations of conformity, the test certificates and the mounting instructions can be consulted or even downloaded as well.

Service for designers

The online catalogue also includes the technical drawings of our products – a special service to designers. In this way, they can be downloaded and directly fed in CAD-systems.

The Schmersal homepage furthermore contains up-to-date information on general subjects, technical articles on machine safety as well as news regarding events and trainings. To be bookmarked!

The direct way

If you need further information or you want personal advice, you can call us as well: Phone +49-(0) 2 02-64 74-0.

We are at your disposal – anyplace, anywhere, anytime!

K.A. Schmersal GmbH Industrielle Sicherheitsschaltsysteme

Möddinghofe 30 D-42279 Wuppertal Postfach 24 02 63 D-42232 Wuppertal

Telefon +49 - (0)2 02 - 64 74 - 0 Telefax +49 - (0)2 02 - 64 74 - 1 00

E-Mail info@schmersal.de Internet http://www.schmersal.com